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Introduction

By a series of discoveries during the past thirty years, a distinguished
list of researchers have provided us with a marvelous vista of singularity
theory as it applies to isolated singularities, especially isolated complete
intersection singularities. This began with Milnor’s seminal monograph
on isolated hypersurfaces singularities [Mi], which introduced as a prin-
cipal tool in the study of isolated singularities the Milnor fibration
of the singularity. The basic results were extended by Hamm [Ha] to
isolated complete intersection singularities (ICIS). There has followed
a succession of revelations concerning the topology, local geometry, and
deformation theory of ICIS using: De Rham cohomology and Gauss-
Manin connection, intersection pairing and monodromy, mixed Hodge
structures and spectrum, structure of discriminants, equsingularity via
multiplicities; and deformation theory. We refer to e.g. [Lo] and [?]vol
2]AVG where many of these results are presented.

If we were to seek a comparable view of the more complicated non-
isolated singularities, then the results for ICIS provide a virtual “wish
list”of types of results to be obtained. However, now the vista is con-
siderably clouded, lacking many of the details so apparent for ICIS, al-
though revealing general features via techniques involving stratification
theory, resolution of singularities, etc.

A sample of the kinds of questions involving nonisolated singular-
ities which we will consider involve e.g.: topology of complements of
hyperplane arrangements, the topology of boundary singularities of
complete intersections, critical points of functions fλ1

1 · · · fλr
r appear-

ing in hypergeometric functions, minimum Ae–codimenson for germs
f : C| n, 0 → C| p, 0 in a given contact class, de Rham cohomology of
highly singular spaces, higher multiplicities à la Teissier for nonisolated
singularities together with Buchbaum–Rim multiplicities of modules; as
well as properties of discriminants and bifurcation sets for various no-
tions of equivalence. These examples share no obvious common feature
except ultimately they concern properties of highly nonisolated singular
spaces.
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2 James Damon

However, there are two key obstacles to extending results for ICIS
to such highly singular spaces. First, the Milnor fibration no longer has
the connectivity properties possessed in the ICIS case. By the The-
orem of Kato–Matsumoto [KM], for a hypersurface singularity (X, 0)
of dimension n with singular set sing(X), the connectivity of the Mil-
nor fiber decreases by dim C| (sing(X)), i.e. it is in general only (n −
1) − dim C| (sing(X)) connected. Second, unlike isolated singularities,
nonisolated singularities generally do not have a versal deformation.
Hence, we lack a relation between the topology of Milnor fibers and
the structure of discriminants.

Because of the first complication, there is a range of cohomology
groups to be determined to understand the topology of the Milnor fiber.
By comparison with the state of affairs reported by Randell [Ra1] at
the end of the 70’s, considerable advances for low dimensional singular
sets has been accomplished through the work led by Siersma [?]1-4]Si
and the Dutch group of Pellikaan [Pe1, Pe2], Van Straten [VS1], de
Jong [dJ], etc. along with coworkers Massey [Ms1, Ms2] [MSi], Tibar
[Ti], Nemethi [Ne], etc. This work will be reported on by Siersma at this
conference. However, for highly singular spaces this method becomes
increasingly difficult to apply.

We describe an alternate approach, which has its origins in algebraic
geometry beginning with Hilbert. It applies to large classes of noniso-
lated singularities which arise as nonlinear sections of fixed “model
nonisolated singularities”. We use a Thom-Mather type of group of
equivalence, KV , to analyze the singularities of such sections. This
allows us to overcome both obstacles.

Beginning with joint work with Mond on hypersurfaces, we obtain
for nonlinear sections of nonisolated singularities, a singular analogue
of the Milnor fibration. Using a result of Lê [Lê1], we show it retains the
same connectivity properties as for Milnor fibers of an ICIS. A crucial
ingredient for further analyzing the topology is the notion of freeness
introduced by Saito [Sa] for divisors. If the model singularities are “free
divisors and complete intersections”, then the freeness first provides the
algebraic condition needed to compute the singular Milnor number as
the length of a determinantal module. In the hypersurface case, the
module is the normal space for another equivalence KH . It agrees with
the KV –normal space in the weighted homogeneous case, yielding a
“µ ≥ τ”result.

Second, in the complete intersection case, there is a generalization
of the Lê–Greuel formula which computes the relative singular Mil-
nor number of a divisor on an ICIS as the length of a determinantal
module. When the divisor has an isolated singularity, we recover the
Lê–Greuel formula as a special case. However, it applies more generally
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Sections of Complete Intersections 3

to include “arrangements of hypersurfaces”on complete intersections,
singular Milnor fibers for “boundary singularities”(or equivalently com-
plete intersection singularities on a divisor at infinity), projections of
discriminants, etc. It further extends to general nonisolated complete
intersections, where there is also an alternate approach, which computes
the singular Milnor number of a nonisolated complete intersection as an
alternating sum of singular Milnor numbers of unions of hypersurfaces.

These results allow us to introduce and compute higher multiplici-
ties à la Teissier for nonisolated complete intersections. For hyperplane
arrangements and their nonlinear generalizations, these multiplicities
have surprising relations with other invariants of arrangements and
with the topology of the complement.

To further explore the topology of nonlinear sections, we describe
how methods using de Rham cohomology can be introduced. These
include results of Alexandrov and Mond and coworkers which compute
cohomology using the complex of logarithmic forms. Besides being used
to compute the cohomology of the complement of a free divisor [CMN],
and certain local cohomology [Av1, Av2], the logarithmic complex is
used by Mond to construct the correct complex for computing the de
Rham cohomology of the singular Milnor fiber and defining a Gauss–
Manin connection for the singular Milnor fibration [Mo3].

Lastly, we turn in Part IV to consider why discriminants and bifur-
cation sets so frequently are free divisors. Except for results concerning
discriminants for space curves and for functions on them by [VS2],
[Go2], [MVS], results on freeness of discriminants can be summarized
by the motto “Cohen–Macaulay of codim 1 + genericity of Morse–type
singularities implies freeness”.

We indicate how this specifically applies for various equivalences,
as well as when it does not. When either condition fails this leads to
the introduction of the notion of a “Cohen–Macaulay reduction”and a
weaker Free* Divisor structure. However, the Free* Divisor structure
still can be used to determine the topological structure as above.

One final point concerns the role that the structure of modules, es-
pecially determinantal modules, and (implicitly) Buchbaum–Rim mul-
tiplicities play in all of this work. This changes the emphasis from
invariants associated to local rings to invariants of modules of log-
arithmic vector fields. This parallels the increasingly important role
played by modules, their integral closures, reductions, and Buchbaum–
Rim multiplicities in the work of Gaffney on Whitney equisingularity
[Ga, Ga2], [GK], as well as its influence on the work of Kirby and Rees
[KR] [Re], Kleiman–Thorup [KT], and Henry–Merle [HM] (as well as
the many other references to be given in Gaffney’s lectures). Because
of this we raise several natural questions regarding the intrinsic nature
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of the results we describe and the form they might take as we move
“beyond freeness”

I Nonisolated Singularities as Nonlinear Sections

1. Singularities arising as Nonlinear Sections and KV –
equivalence

We consider the approach to singularities which represents certain sin-
gularities and their deformations as sections of standard model singu-
larities. For example, by the Hilbert–Burch theorem [Hi], [Bh], Cohen–
Macaulay singularities of codimension 2 can be represented by the n×n
minors of an n×(n+1) matrix of holomorphic germs. This was extended
to their deformations by Schaps [Sh]. Buchsbaum–Eisenbud character-
ized codimension 3 Gorenstein singularities [BE] as the Pfaffians of
principal minors of skew–symmetric matrices. A general criterion was
given by Buchweitz [?]Chap 4, 5]Bu who defined a deformation theory
for sections and showed that for certain singularities, their deformations
can be represented as nonlinear sections of “very rigid singularities”.
Not all deformations of singularities can be so represented, as illustrated
by the example of Pinkam [?]8.2]Pi of a surface singularity which is a
cone on a rational curve of degree 4 in IP 4 and can be represented as
the 2× 2 minors of either a certain 2× 4 matrix or a 3× 3 symmetric
matrix. Each representation gives rise to distinct components in the
base of the versal deformation.

C| n, 0
f0−−−→ C| p, 0

x





x





f−1
0 (V ) V0, 0 −−−→ V, 0

(1)

We shall be concerned instead with the properties of nonisolated
singularities and their deformations obtained from V by nonlinear sec-
tions f0 and their unfoldings (this ignores the problem of missing (flat)
deformations). Given V, 0 ⊂ C| p, 0, we consider holomorphic germs
f0 : C| n, 0 → C| p, 0 which we view as nonlinear sections of V so that the
singularity V0 = f−1

0 (V ) is a pullback as given in (1). Here f0 does not
have to be a germ of an embedding.

EXAMPLE 1.1. Any germ f0 : C| n, 0 → C| p, 0 of finite singularity
type, has a stable unfolding F : C| n′ , 0 → C| p′ , 0. If g0 : C| p, 0 → C| p′ , 0
denotes the inclusion, then the discriminant D(f0) = g−1

0 (D(F )), with
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Sections of Complete Intersections 5

D(F ) the discriminant of F . If n < p, then D(F ) is the image of F . How
can the properties of D(f0) be deduced from those of g0 and D(F )?

For properties of nonlinear sections f0 of V, 0 ⊂ C| p, 0, we follow
the Thom–Mather approach by defining a group of equivalences KV
[D1] acting on sections f0 and their unfoldings to capture the ambient
equivalence of V0, 0 = f−1

0 (V ), 0. KV is a subgroup of the contact
group K, introduced by Mather [M-II] (also see Tougeron [Tg]), and
consists of germs of diffeomorphisms of C| p+n, 0 of the form Ψ(x, y) =
(Ψ1(x), Ψ2(x, y)).

KV = {Ψ ∈ K : Ψ(C| n × V ) ⊆ C| n × V }. (2)

It acts on sections by the restriction of the action of K: graph(Ψ ·
f0) = Ψ(graph(f0))).

We can extend KV to the group of unfolding–equivalences KV,un
acting on unfoldings with any fixed number of unfolding parameters
u ∈ C| q. These groups (together with the associated unfolding groups)
are “geometric subgroups of A or K”and satisfy the basic theorems
of singularity theory, especially the versality and finite determinacy
theorems [D0]. In fact, it is shown in [D1] that such results also hold
for KV –equivalence in the real case for smooth germs provided that V
is real analytic and coherent (in the sense of Malgrange [Mg]).

To define the associated extended tangent spaces (which are the
deformation theoretic tangent spaces), we must introduce the module
of “logarithmic vector fields”. We let θp denote the module of germs of
vector fields on C| p, 0. If V, 0 ⊂ C| p, 0 is a germ of an analytic set, let
I(V ) denote the ideal of germs vanishing on V . Then (following Saito
[Sa]) we define

Derlog (V ) = {ζ ∈ θp : ζ(I(V )) ⊆ I(V )}.

This is the module of logarithmic vector fields, which are vector fields
on C| p, 0 tangent to V . If Derlog (V ) is generated by ζ0, . . . , ζr, the
extended KV tangent space is computed [D1]

TKV,e · f0 = OC| n,0{
∂f0

∂x1
, . . . ,

∂f0

∂xn
, ζ0 ◦ f0, . . . , ζr ◦ f0} (3)

(the R–module generated by ϕ1, . . . , ϕk is denoted by R{ϕ1, . . . , ϕk},
or just R{ϕi} if k is understood). The analogue of the deformation
tangent space T 1 is the extended KV normal space

NKV,e · f0 = θ(f0)/TKV,e · f0 ' O(p)
C| n,0/TKV,e · f0

We give an important property of this equivalence (see [?]§1]D2.
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EXAMPLE 1.2. Invariance under suspension and projection If
i : C| p, 0 ↪→ C| p+r, 0 denotes inclusion and π : C| p+r, 0 → C| p, 0 projec-
tion, then as OC| n,0–modules,

NKV,e · f0 ' NKV×C| r,e · i ◦ f0 and NKV×C| r,e · f ' NKV,e · π ◦ f0

Moreover, suspension and projection preserve equivalence classes for
KV and KV×C| r . Hence, for investigating nonlinear sections we may
replace V by V × C| q and retain both the topological and deformation
theoretic properties of the germ V0.

Algebraic and Geometric Transversality

Although any analytic germ V0, 0 ⊂ C| n, 0 is the zero set ( = f−1
0 {0}) for

some analytic germ f0, in general such a germ f0 will not be transverse
to 0 off 0 ∈ C| n. In order to ensure that properties of V are passed
on to V0, we require that f0 be transverse to V outside 0. The notion
of transversality we use depends upon the interpretation of “TyV ”at
a singular point y ∈ V . If we use TySi, where Si is the stratum of
the canonical Whitney stratification of V , then we obtain “geometric
transversality”. However, for algebraic considerations, the appropriate
version of transversality is more subtle, and invokes Derlog (V ).

For an OC| p,0–submodule M ⊂ θp generated by {ζ1, . . . , ζr}, we let
〈M〉y be the subspace of C| p generated by {ζ1(y), . . . , ζr(y)}. This is well–
defined for y in a neighborhood of 0. Then, we define the “logarithmic
tangent spaces ”TlogV(y) = 〈Derlog (V )〉y. Then, f0 is algebraically
transverse to V at x ∈ C| n if

df0(TxC| n) + TlogV(f0(x)) = T(f0(x))C|
p

Then, just as for K equivalence, by [D1] there is a geometric character-
ization for f0 having finite KV –codimension (i.e. dim C| (NKV,e · f0) <
∞); namely, f0 has finite KV codimension iff f0 is algebraically trans-
verse to V off 0, i.e. at all x in a punctured neighborhood of 0. We can
analogously define algebraic (or geometric) transversality of germs of
singular varieties, as well as algebraic (or geometric) general position.
We always have

TlogV(y) ⊆ TySi (4)

Hence,

algebraic transversality =⇒ geometric transversality.

However, (4) may be strict inclusion, and then the algebraic tangent
spaces are tangent to a (possibly singular) foliation of a canonical
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Sections of Complete Intersections 7

statum. The strata Si for which (4) is equality at all points y ∈ Si
are called holonomic strata, and the codimension of the complement
of the set of holonomic strata is called the holonomic codimension and
denoted hn(V ). If n < hn(V ), then the reverse implication in (4) holds.

Low KV –codimension germs

f0 has KV,e–codimension 0 iff it is algebraically transverse to V at 0. By
the versality theorem, such an f0 is already KV –versal, so any unfolding
of f0 is KV –trivial. If moreover f0 is a germ of an embedding, then by
the versality theorem, V ' V0 × C| p−n.

For KV,e–codimension 1 we give a definition.

DEFINITION 1.3. Given V, 0 ⊂ C| p, 0 and an integer n > 0, then a
germ g : C| n, 0 → C| p, 0 is a Morse–type singularity in dimension n
if g has KV,e–codim = 1 and is KV –equivalent to a germ f0, so that
for a common choice of local coordinates, both f0 and V are weighted
homogeneous. We furthermore say V has a Morse–type singularity in
dimension n at x if there is a germ g : C| n, 0 → C| p, x which is a
Morse–type singularity (using K(V,x)–equivalence).

Although V is unspecified, such singularities can be precisely classified
using KV –equivalence [?]Lemma 4.12]D7 and [?]Lemma 7.2]D8.

LEMMA 1.4. (Local Normal Form). Let f0 : C| n, 0 → C| p, 0 be a Morse–
type singularity for V, 0 ⊂ C| p, 0. Then, up to KV –equivalence, we may
assume V, 0 = C| r × V ′, 0 for V ′, 0 ⊂ C| p′ , 0 with TlogV ′

(0) = 0, and with
respect to coordinates for which V ′, 0 is weighted homogeneous, f0 has
the form

f0(x1, . . . , xn) = (0, . . . , 0, x1, . . . , xp′−1,
n

∑

j=p′
x2

j ) (5)

Remark. The condition of weighted homogeneity in Definition 1.3 is
not needed to obtain the normal form (5). However, it is essential so
that V will still be weighted homogeneous in (5) for questions involving
freeness of discriminants in part IV.

The actual singularity obtained as a nonlinear section depends upon
V and can vary considerably, see e.g. the possible Morse–type singu-
larities in dimension 2 for discriminants of stable multigerms [?]§4]D7.
Nonetheless, we see in §3 that the topology (i.e. homotopy type) of a
Morse–type singularity exactly matches ordinary Morse singularities.
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Relation between A and KV –equivalence

To see the relevance of sections for other equivalences, we reconsider
(1) except now allow f0 to be a multigerm with F its stable unfolding.

THEOREM 1.5. ([D2]). There are the following relations between A–
equivalence for f0 and KD(F )–equivalence for g0:

1.f0 has finite A–codimension iff g0 has finite KV –codimension;

2.if either is finite, then there is the isomorphism of OC| p,0–modules

NAe · f0 ' NKV,e · g0

Let g be an unfolding of g0, with pullback of F denoted by f .

3.If g is a KV –trivial unfolding (resp. family) then f is an A–trivial
unfolding (resp. family);

4.g is KV –versal iff f is A–versal.
Remark. Such a classification by sections has several extensions

such as for K–equivalence of unfoldings for [MM], A–equivalence of
unfoldings of hypersurface germs [?]§11]D4, etc.

The preceding theorem relates the A properties and classification of
germs with those for KV –equivalence of sections. For a stable sim-
ple multigerm F , Morse–type singularities for sections of V = D(F )
provide the Ae–codimension 1 multigerms in the contact class of F .
The classification of Ae–codimension 1 germs for simple K classes fol-
lows from Goryunov [Go1]; and for unfoldings of simple hypersurface
germs and ICIS surface singularities, using local duality and results
from Wahl, Looijenga, and this author (described in [?]§6]D7). These
yield the KV,e–codimension 1 germs for discriminants of simple stable
germs. Then, a construction using the product union [D7] gives the
KV,e–codimension 1 germs for the discriminants of multigerms. In turn,
this gives the Ae–codimension 1 multigerms. Other approaches to their
classification are given in Rieger [Ri] and by Wik Atique, Cooper, and
Mond [ACM].

2. Role of Freeness for Divisors and Complete Intersections

To proceed further with properties of nonlinear sections, we need fur-
ther information about (V, 0). Rather than consider its local ring, we
seek instead conditions on Derlog (V ) which reveal the properties and
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topology of V , and of the singularities arising as nonlinear sections of
V . In fact, Derlog (V ) is a Lie algebra; and Hauser and Müller [HMu]
prove that the isomorphism class of Derlog (V ) in an appropriate sense
uniquely determines (V, 0).

Among local rings, regular local rings are the simplest and corre-
spond to smooth submanifolds. The simplest structure for Derlog (V )
occurs when V, 0 = C| p−1, 0 ⊂ C| p, 0 is a smooth hypersurface. Then,
Derlog (V ) is a free module generated by { ∂

∂y1
, . . . , ∂

∂yp−1
, yp

∂
∂yp
}. How-

ever, as discovered by Saito [Sa], and independently by Arnold [A2], this
property does not characterize smooth hypersurfaces (V, 0). There are
many important highly singular hypersurface singularities for which
Derlog (V ) is free of rank p. It is still true that the freeness reveals
much about their topology and that of nonlinear sections. This leads
to Saito‘s definition [Sa].

DEFINITION 2.1. A hypersurface V, 0 ⊂ C| p, 0 is called a Free Divisor
if Derlog (V ) is a free OC| p,0–module. (necessarily of rank p)

Initially three basic classes of free divisors were identified.

THEOREM 2.2. (Three “original”classes of free divisors ).

1.Discriminants of versal unfoldings of isolated hypersurface and com-
plete intersection singularities are free divisors (Saito [Sa] and Looi-
jenga [Lo]);

2.Bifurcation sets of (versal unfoldings of) isolated hypersurface sin-
gularities are free divisors (Bruce [Br] and Terao [To2]);

3.Coxeter arrangements (union of reflecting hyperplanes for a Coxeter
group) are free divisors (Terao [To1]).

These examples illustrate how free divisors arise among fundamental
objects, but (as we shall later see) this list only scratches the surface.

Saito also recognized for free divisors the important properties which
follow for the complex of “logarithmic differential forms”. Let Ωk

C| p,0
denote the module of germs of holomorphic k–forms on C| p, 0. For a
hypersurface germ V, 0 ⊂ C| p, 0, with reduced defining equation h we
follow [Sa] and define the logarithmic k–forms

Ωk(logV ) = {ω ∈ Ωk
C| p\V,0 : hω, hdω ∈ Ωk

C| p,0}

Let Ω•(logV ) denote the corresponding complex of logarithmic forms.

THEOREM 2.3. ([?]§1]Sa).
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1.The complex Ω•(logV ) is an exterior algebra closed under exterior
differentiation. Moreover, it is closed under interior product with,
and Lie derivative by, vector fields in Derlog (V ).

2.V, 0 is a free divisor iff Ω1(logV ) is free of rank p; and then Ωk(logV ) =
∧k Ω1(logV ) and is hence a free OC| p,0–module.

Furthermore, Saito gives an extremely useful criterion for freeness of a
divisor.

THEOREM 2.4. (Saito’s Criterion). Let ζi ∈ Derlog (V ), i = 1, . . . , p
with ζi =

∑

j aij
∂

∂yj
. If det(aij) is a reduced defining equation for V, 0,

then V is a free divisor and the ζi generate Derlog (V ).

This is the basis for many results identifying free divisors. The only
other intrinsic characterization of freeness is given by Alexandrov [Av1],
[Av2].

THEOREM 2.5. Let h be a reduced defining equation for a hypersur-
face germ V, 0 ⊂ C| p, 0. Also let J(h) denote the Jacobian ideal of h.
Suppose Sing(V ) has codimension 1 in V, 0, then each of the following
is equivalent to V being a free divisor:

1. Sing(V ) is a determinantal germ;

2. Sing(V ) is Cohen–Macaulay (for the structure given by J(h)).

Using this criterion, Alexandrov gives an alternate proof that discrim-
inants of versal unfoldings of ICIS are free divisors [Av2]

The parenthetical condition in 2) is crucial, as the intrinsic geometric
structure of Sing(V ) does not determine whether V is free

EXAMPLE 2.6. Consider the surface singularities in C| 3 defined by

f1 = x10 + y10 + zx6y6 and f2 = x10 + y10 + z(x7y5 + x5y7)

Both fi are equisingular deformations (with parameter z) of the plane
curve singularity f0 = x10 + y10. Using different methods in [D11],
it is shown that the first defines a free divisor while the second does
not. However, each have the same singular set consisting of the z–
axis, which is smooth and hence Cohen–Macaulay. Thus, the extra
structure of J(h) is required for Alexandrov’s criterion. Moreover, both
functions, viewed as deformations, are topologically equivalent to the
trivial deformation of f0. Thus, freeness is NOT a topological property
of divisors. This contrasts with a conjecture of Terao that for cen-
tral hyperplane arrangements (viewed as nonisolated singularities) the
freeness is determined by the associated lattice.
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The suspension of a free divisor V × C| r, 0 is easily seen to be free;
however, a product of free divisors is not even a hypersurface. The
product is naturally replaced by the “product union”of free divisors
Vi, 0 ⊂ C| pi , i = 1, 2

V1 ∪×V2 = V1 × C| p2 ∪ C| p1 × V2

(we can repeat the construction inductively). By [?]prop. 3.1]D4 the
product union of free divisors is again a free divisor. For example,
by Mather’s multitransversality characterization of stability [M-V], the
discriminant of a stable multigerm is the product union of the discrimi-
nants of the individual stable germs, and so free. Also, the “product”of
hyperplane arrangements [?]Chap. 1]OT1 is really a product union.

Derlog (H) and Free Complete Intersections

To extend the preceding to complete intersections, we encounter a basic
problem. We would like {0} ⊂ C| p to be a free complete intersection;
however Derlog ({0}) is generated by {yi

∂
∂yj
} and is far from being

free. We change our perspective to circumvent this problem. We recall
from [?]§2]DM that we may always replace a hypersurface V ⊂ C| p

by V ′ = V × C| and find a “good defining equation”H for V ′, which
means there is an “Euler–like vector field”e such that e(H) = H. This
does not require that V be weighted homogeneous (although if it is
and of nonzero weight then the usual Euler vector field suffices). As
this does not alter properties of nonlinear sections, we may suppose
V already has this property. Then, we introduce the module of vector
fields annihilating H.

Derlog (H) = {ζ ∈ θp : ζ(H) = 0}. (6)

Then, for example by [?]lemma 3.3]DM (or equivalently see [Av1])

Derlog (V ) = Derlog (H) ⊕ OC| p,0{e}

Hence, if V is a free divisor with good defining equation, then Derlog (H)
is a free OC| p,0–module of rank p− 1 and conversely.

For the corresponding notion of freeness for a complete intersection
V, 0 ⊂ C| p, 0 defined by H : C| p, 0 → C| k, 0, we define Derlog (H) as in
(6).

DEFINITION 2.7. A complete intersection V, 0 ⊂ C| p, 0 defined by
H : C| p, 0 → C| k, 0 is a (H–) free complete intersection if Derlog (H) is
a free OC| p,0–module (necessarily of rank p− k).
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EXAMPLE 2.8. The most basic example of a free complete inter-
section is given by the product of free divisors, see [?]§5]D8 (although
there are other examples given there). Thus, {0} ⊂ C| p is a free complete
intersection (with Derlog (H) = 0).

While free divisors (and free complete intersections) can be thought of
as rigid universal objects, a much larger and richer class of divisors arise
as nonlinear sections of free divisors by maps algebraically transverse
off 0.

DEFINITION 2.9. A hypersurface V ′, 0 ⊂ C| n, 0 is an almost free
divisor (AFD) (based on V ) if V ′ = f−1

0 (V ) where V, 0 ⊂ C| p, 0 is
a free divisor and f0 : C| n, 0 → C| p, 0 is algebraically transverse to V
off 0. Similarly V ′, 0 is an almost free complete intersection (AFCI) if
instead V, 0 is a free complete intersection.

Each class of free divisors (or free complete intersections) yields a
much larger corresponding class of almost free divisors (or almost free
complete intersections).

EXAMPLE 2.10. Examples of AFD and AFCI i) By (2.8) any ICIS is
an AFCI. ii) By Theorems 2.2 and 1.5, the discriminant of any finitely
A–determined germ which defines an ICIS is an AFD. iii) A central
arrangement of hyperplanes in general position off 0 is an AFD which
is the pullback of a Boolean arrangement, consisting of coordinate
hyperplanes.

EXAMPLE 2.11. Key properties of almost free divisors and complete
intersections (see [?]§3 and §7]D4 and [?]§5]D8).

1. The pullback of an almost free divisor or complete intersection by
a finite map germ algebraically transverse off 0 is again an almost
free divisor or complete intersection.

2. If (Vi, 0) are almost free divisors “transverse”off 0, i.e. in algebraic
general position off 0 then

i) the “transverse union”(∪Vi, 0) is again an almost free divisor and;

ii) the “transverse intersection”(∩Vi, 0) is an almost free complete
intersection.

EXAMPLE 2.12. Examples resulting from properties i) The transverse
union of isolated hypersurface singularities is not isolated; however, it
remains an almost free divisor. ii) (boundary singularities) If V, 0 ⊂
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Sections of Complete Intersections 13

C| p, 0 is a free divisor and X, 0 ⊂ C| p, 0 is an ICIS (algebraically)
transverse to V off 0, then (V ∩ X, 0) is an AFCI. iii) (V, 0), the
union of 4 lines through 0 in C| 3, is an ICIS; but it is also an AFCI
obtained as the pullback by a general 3–dimensional linear section of
the free complete intersection obtained as the product of the Boolean
arrangement {(x, y) : xy = 0} with itself. In this last example, the
different ways of viewing (V, 0) are reflected in the different ways of
deforming it and obtaining vanishing topology in part II.

II Topology of Nonlinear Sections

3. Topology of Singular Milnor Fibers

For a nonlinear section of a nonisolated complete intersection we in-
troduce a (topological) stabilization. Via this stabilization, we define a
“singular Milnor fibration”of f0 so that the “singular Milnor fiber”will
have the correct connectivity properties. In fact, the “singular Milnor
fiber”will be homotopy equivalent to a bouquet of spheres of correct
dimension. The number of such spheres defines a “singular Milnor
number”. We then describe how to algebraically compute the singular
Milnor number as the length of a determinantal module, which turns
out to be the KH,e–normal space of f0.

Stabilization of Nonlinear sections of Complete Intersections

Suppose V, 0 ⊂ C| p, 0 is a nonisolated complete intersection of codi-
mension k. Let f0 : C| n, 0 → C| p, 0 be a nonlinear section of V, 0 which
is geometrically transverse to V off 0. By a (topological) stabilization
of f0 we mean a holomorphic family of maps ft : U → C| p (for U a
neighborhood of 0), such that: ft is geometrically transverse to V for
t 6= 0 (i.e. transverse to the canonical Whitney stratification of V ); and
for t = 0 it is a representative of the germ f0 which is transverse to V
on U\{0}. In the case n < hn(V ) we can even ensure the stabilization
is algebraically transverse to V .

Then, we can apply a theorem of Lê [Lê1] which extends Milnor’s
theorem to a function germ f defined on a (possibly nonisolated) n+1–
dimensional complete intersection X , 0 ⊂ C| m, 0, and which has an
isolated singularity in an appropriate sense. Lê proves f0 has a Milnor
fibration with fibers which are singular but still n − 1 connected and
homotopy equivalent to a bouquet of real n–spheres. Then, Lê’s theo-
rem can be appropriately applied to a projection on the stabilization
and combined with [LêT2] and standard type stratification arguments.
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14 James Damon

Figure 1. Singular Milnor fibers for: a) hyper/ section of a discriminant and b) an
AFCI obtained as the intersection of a braid arrangement and a quadric

Letting Bε denote a ball about 0 in C| n of radius ε > 0. We obtain for
nonlinear sections of hypersurfaces from joint work with Mond [?]Thm
4.6]DM (and for complete intersections [?]Lemma 7.8]D4, or [?]Thm
3]D5).

THEOREM 3.1. Let ft as above be a stabilization of f0 as a non-
linear section of the complete intersection V, 0 ⊂ C| p, 0 of dimension
k. For t and ε > 0 sufficiently small, f−1

t (V ) ∩ Bε is independent of
the stabilization ft and is homotopy equivalent to a bouquet of real
(n− k)–spheres.

Then, f−1
t (V )∩Bε is called the singular Milnor fiber of f0 (or of V0). The

number of such spheres is called the singular Milnor number and de-
noted by µV (f0) (or µ(V0) if f0 is understood). The spheres themselves
are the singular vanishing cycles.

EXAMPLE 3.2. For the examples in (2.12): i) the singular Milnor
fiber is the union of the Milnor fibers of the hypersurfaces, chosen so
they are in general position; ii) (boundary singularities) the singular
Milnor fiber of V ∩X, 0 is the intersection of the boundary singularity
V with the usual Milnor fiber of X chosen so it is transverse to V ,
figure 1 b); iii) for the AFCI of 4 lines in C| 3, the singular Milnor fiber
is a union of 4 skew lines `i such that they intersect in cyclic order `1
and `2, `2 and `3 etc., forming a single singular 1-cycle.

Remark. This extends to images of finite map germs f0 : C| n, 0 →
C| n+1, 0, see Mond [Mo1] and [Mo2]

Formula for the Singular Milnor number of an Almost Free Divisor

We next give the algebraic formula for the singular Milnor number of
an almost free divisor based on the free divisor V with a good defining
equation H. This formula is the analogue of Milnor’s original formula.

To do so we introduce another equivalence, KH–equivalence, which
is an analog of KV –equivalence for which Ψ in (2) preserves instead
the level sets of the defining equation H. The extended tangent space
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Sections of Complete Intersections 15

TKH,e · f0 is computed by replacing in (3) the generators of Derlog (V )
by Derlog (H), i.e. we remove the Euler–like vector field e. (see [?]§3]DM).

As V is free, we may choose generators {ζ0, ζ1, . . . , ζp−1} for Derlog (V )
such that ζ0 = e and ζi, i > 0. generate Derlog (H).

We let νV (f0) denote an algebraic codimension (= KH,e−codim (f0))
which is defined by

νV (f0) = dimC| OC| n,0{
∂

∂yi
}/OC| n,0{

∂f0

∂x1
, . . . ,

∂f0

∂xn
, ζ1 ◦f0, . . . , ζp−1 ◦f0} (7)

Just as for Derlog (V ), we can define

Tlog(H)(y) = < Derlog (H) >(y)

Equality holds Tlog(H)(y) = Tlog(V )(y) if there is an Euler–like vector
field defined near y which vanishes at y, e.g. if V is locally weighted
homogeneous at y for some choice of local coordinates. Then, we define
the H–holonomic codimension h(V ) as we did the holonomic codimen-
sion hn(V ), except using the condition Tlog(H)(y) = TySi, i.e. h(V ) is
the codimension of the largest stratum which is not H–holonomic.

Then, provided we remain below h(V ) we can compute the singular
Milnor number using (7)

THEOREM 3.3. ([?]Thm 5]DM). Suppose that V, 0 is a free divisor
with n < h(V ), and that f0 is a germ of an embedding algebraically
transverse to V off 0 so that νV (f0) < ∞. Then, the singular Milnor
number µV (f0) = νV (f0).

Remark. Originally in [DM], the result was stated for embeddings
f0; however, by the graph trick and invariance under suspension, we
can apply the theorem to any f0 algebraically tranverse to V off 0 by
reducing to an embedding, see e.g. the discussion in [?]Pt I]D4.

µ ≥ τ results : With the notation of (1.1), suppose f0 is a finite A–
codimension germ with stable unfolding F . Let µ = µD(F )(g0) and
τ = KV,e− codim (f0). Then, as a corollary of Theorem 3.3 (see [DM]),
provided (n, p) is in the “nice dimensions”in the sense of Mather [M-VI],
µ ≥ τ with equality if f0 is weighted homogeneous. This is the ana-
logue of the µ = τ results obtained by Greuel, Wahl, and Looijenga–
Steenbrink see[?]Chap. 8]Lo. However, it can fail if n ≥ h(V ) (see
[?]Thm.6]DM and [?]§4]D9). We further consider other µ = τ results
and their relation to freeness of discriminants in Part IV.

EXAMPLE 3.4. i) In the case of isolated hypersurface singularities,
we obtain the usual Milnor fibers and the usual formula for the Milnor
numbers.
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16 James Damon

ii) If g : C| n, 0 → C| p, 0 is a Morse type singularity for V , then the
weighted homogeneity implies KH,ecodim (g) = KV,ecodim (g) = 1.
Hence, provided n < h(V ), the theorem implies that for Morse–type sin-
gularities, there is exactly one singular vanishing cycle in their singular
Milnor fibers, as for usual Morse singularities.

iii) For the versal unfolding F of any simple hypersurface singularity,
D(F ) is weighted homogeneous. A linear section of D(F ) defined by
the vanishing of unfolding parameter of lowest weight is a Morse–type
singularity . A perturbation of the section moves off the origin and
creates exactly one vanishing cycle as is usual/tured for the swallowtail
singularity figure 1, also see [?]§4]D4).

Suppose V, 0 ⊂ C| p, 0 is an almost free divisor based on V ′, 0 ⊂ C| p′ , 0
via g0 : C| p, 0 → C| p′ , 0, and that νV ′(g0) < ∞. Derlog (V ) is generally
not free and Theorem 3.3 does not apply (and, in fact, fails badly) for
sections of V . However by the behavior of almost free divisors under
pullback by finite map germs, we can still compute the singular Milnor
number of a section of V (see [?]Cor. 4.2]D3).

COROLLARY 3.5. Suppose that f0 : C| n, 0 → C| p, 0 is a finite map
germ with n < p, h(V ′), which satisfies νV ′(g0 ◦ f0) < ∞. The singular
Milnor number for f0 (which equals the number of (n − 1)–spheres in
f−1

t (V ) ∩Bε for a stabilization ft) is given by νV (g0 ◦ f0).

4. An Extension of the Lê-Greuel Formula

Relative Singular Milnor Number for a Divisor on a Complete
Intersection

The Milnor number of an ICIS is computed inductively via the Lê–
Greuel formula. Suppose X, 0 ⊂ C| n, 0 is a positive n−m–dimensional
ICIS defined by f2 = (f21, . . . , f2m), and that f1 : C| n, 0 → C| , 0 has an
isolated singularity restricted to X. Then, f = (f1, f2) defines the ICIS
X0 = X ∩ f−1

0 (0).

THEOREM 4.1. (Lê–Greuel [LGr]). In the preceding situation

µ(f) + µ(f2) = dim C| OC| n,0/((f21, . . . , f2m) + J(f)) (8)

J(f) denotes the ideal generated by the (m + 1)× (m + 1) minors of df .

Suppose Xy denotes a Milnor fiber of f2 over y such that the intersection
X(0,y) = Xy ∩ f−1

1 (0) is transverse giving the Milnor fiber of f . Then,
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the pair (Xy, X(0,y)) has homology only in dimension n−m and the LHS
of (8) is the “relative Milnor number”= dim C| Hn−m(Xy, X(0,y)). Thus,
the RHS of (8) can be alternately viewed as providing an algebraic
formula for this relative Milnor number.

We extend this result to the relative case of an almost free divisor
V0 transversely intersecting an almost free complete intersection X off
0. We begin with the case where X is again an ICIS defined by f2 as
in Theorem 4.1. Now we suppose f1 : C| n, 0 → C| p, 0 is algebraically
transverse to the free divisor V off 0. Let {ζ1 . . . , ζp−1} be generators
for Derlog (H), with H a good defining equation for V .

If f1t is a stabilization of f1 and Vt = f−1
1t (V ) is transverse to

Xy = f−1
2 (y) ∩ Bε on Bε, then X(t,y) = Vt ∩Xy is the singular Milnor

fiber of V0∩X. Then, ((Xy, X(t,y)) is n−m−1–connected and the rela-
tive singular Milnor number µ(X,X∩V0)(f) = dim C| Hn−m(Xy, X(t,y)) is
computed via the following module version of the Lê–Greuel formula.

THEOREM 4.2. ([?]Cor. 9.6]D4). For the relative case of an almost
free divisor V0 and ICIS X, as above, the relative singular Milnor
number is given by

µ(X,X∩V0)(f) = dim C| O
(p+m)
X,0 /OX,0(

∂f
∂x1

, . . . ,
∂f
∂xn

, ζ1 ◦f1, . . . , ζp−1 ◦f1)

We note several consequences. First, (X, 0) is a complete intersection
(and hence Cohen–Macaulay) of positive dimension n −m. The RHS
in Theorem 4.2 is the quotient of a free OX,0–module of rank p + m,
on n + p− 1 = (n−m) + (p + m)− 1 generators. As the quotient has
finite length, by results of Eagon–Northcott the quotient module on the
RHS in Theorem 4.2 is Cohen–Macaulay. In particular, its length is also
its Buchsbaum–Rim multiplicity. Hence, by results of Buchsbaum–Rim
[BRm], the length equals the length of the quotient algebra of OX,0 by
the (n+p−1)×(n+p−1) minors of the matrix formed from the generators
of the quotient. In particular, in the case V = {0}, there are no ζi, and
we obtain exactly the Lê– Greuel formula for the ICIS case.

Second, we may apply this result to the case of a fixed free divisor
V, 0 ⊂ C| n, 0 which we view as a “boundary”and consider “boundary
singularities”, e.g. [A3], [Ly], etc. (or equivalently view V as a divisor at
infinity and consider locally singularities at infinity, e.g. [SiT]). Then,
f1 = idC| n . Let Xy be the Milnor fiber of an ICIS g transverse to V .
By projecting off the first m generators, Theorem 4.2 takes the form.

COROLLARY 4.3. For a ICIS X, 0 defined by g : C| n, 0 → C| m, 0 for
n > m, the boundary singularity for the free divisor boundary V has
relative singular Milnor number

dim C| Hn−m(Xy, Xy ∩ V ) = dim C| O
(m)
X,0/OX,0{ζ1(g), . . . , ζn−1(g)}
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In particular, for an isolated hypersurface singularity X, we recover
a formula which is similar, although not identical, to one of Bruce–
Roberts [?]Prop. 6.4]BR, except they were computing the number of
critical points as opposed to the singular Milnor number. As both in-
variants are computed by counting critical points, these numbers should
agree, despite the slight difference in the formulas.

If we consider the more general situation where now we replace the
ICIS X by a general AFCI based on a product of free divisors V ′ ⊂ C| p2 ,
then we still obtain a formula given by the length of a determinantal
module as in (4.2). However, it computes instead the relative Euler
characteristic χ(Xy, X(t,y)) where Xy is the usual smooth Milnor fiber
of the germ f2 (which is no longer a bouquet of n − m–spheres) and
X(t,y) is the intersection of the singular Milnor fiber of f1 with Xy. We
denote this by χ̃(X,X∩V0). We let V ′ be defined by h2 = (h22, . . . , h2m)
as a product of free divisors and V, 0 by h1, with each h2i and h1 good
defining equations for the appropriate free divisor. Let h = (h1, h2).

THEOREM 4.4. ([?]Thm. 9.4]D4). In the preceding situation,

χ̃(X, X ∩ V0) = (−1)`dim C| O
(p+m)
X,0 /OX,0(

∂f
∂x1

, . . . ,
∂f
∂xn

, ζ1 ◦ f, . . . , ζn−m ◦ f)

where ` = n−m + 1 and ζ1, . . . , ζn−m are generators for Derlog (h).

To relate this relative Euler characteristic with the relative singular
Milnor number, we consider an alternate approach when V is given as
the transverse intersection off 0 of almost free divisors Vi, i = 1, . . . ,m.
The transverse union of a subset of the Vi is still an almost free divisor,
so the singular Milnor number can be computed by Theorem 3.3. Then,
the singular Milnor number of the intersection ∩iVi can be expressed
as an alternating sum of singular Milnor numbers of various unions of
subsets of the Vi, see [?]§8, Thm. 2]D4. For example, this can be applied
to give an alternate derivation of the formula of Guisti [Gi], Greuel–
Hamm [GH], and Randell [Ra2] for the Milnor number of a weighted
homogeneous ICIS.

In the simplest case the formula takes the form

µ(V1 ∩ V2) = µ(V1 ∪ V2)− µ(V1)− µ(V2) (9)

For example, consider the complete intersection of two free divisors
which are suspensions of cusp singularities as shown in figure 2. The
singular Milnor fiber of both the intersection and union as shown have
a single vanishing cycle (and each µ(Vi) = 0). By contrast, Theorem
4.4 gives a relative Euler characteristic = 9 (using the smooth Milnor
fiber). Hence, it not only counts the vanishing cycle but also adds
contributions of 2 for each singularity in the singular Milnor fiber.
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Figure 2. Intersection/union of free divisors, their singular Milnor fibers, with the
single vanishing cycles

REMARK 4.5. [Proof of the relative formulas] As a main step in prov-
ing the Theorems 4.3 and 4.7, we apply a generalization of the lemma
of Siersma used in [DM]. In [Si] Siersma shows that the standard Morse
theory type argument used by Looijenga in [?]Chap. 5]Lo, and in its
original form due to Lê [Lê2] [Lê3], can also be extended to nonisolated
singularities defined by germs g : C| n+1, 0 → C| , 0. For the relative case,
we establish [?]§9]D4, [?]§4]D6 an analogue for nonisolated singularities
defined on complete intersections. Note these methods compute the
topology of singular spaces without using stratified Morse theory of
[GMc].

Buchbaum–Rim Multiplicity of a Determinantal module on a
Complete Intersection

The formulas for the singular Milnor number or relative singular Milnor
number given in Theorems 3.3, 4.2, 4.4 and 4.3 are given by the length
of a determinantal module (on a complete intersection). This is the
Buchbaum–Rim multiplicity of the module. We next give a formula for
this Buchbaum–Rim multiplicity in the (semi-) weighted homogeneous
case in terms of the weights.

We suppose that X, 0 ⊂ C| p, 0 is a weighted homogeneous complete
intersection defined by f = (f1, . . . , fp−n) where wt (yi) = ai, wt (fi) =
bi. Let F1, . . . , Fn+k−1 ∈ (OC| p,0)

k be weighted homogeneous of degrees
di. This means we assign weight cj to εj = (0, . . . , 1, 0, . . . , 0), with 1
in the j–th position. Then, Fi = (Fi1, . . . , Fik) with each Fij weighted
homogeneous of weight di + cj (di and cj are not uniquely determined
by Fij). We let a = (a1, . . . , ap), b = (b1, . . . , bp−n), and similarly for d
and c. Then, let

M = (OX,0)k/ (OX,0{F1, . . . , Fn+k−1})
R = OX,0/Ik (F1, . . . , Fn+k−1)

where Ik(F1, . . . , Fn+k−1) denotes the ideal generated by the k × k
minors of the k × (n + k − 1) matrix (Fij).
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There is considerable redundancy in the sets of weights wt (Fij).
There is a smaller n×k degree matrix D whose ij-th entry is di+j−1+cj .
Then, we define a universal function τ for all matrices [?]§2]D3; and
using properties of determinantal modules due to Macaulay [Mc] and
Northcott [N], we give a formula for the dimensions of M and R in
terms of the weights via τ(D). Moreover, τ(D) can be expressed using
σj(d), the j-th elementary symmetric function in d1, . . . , dp+k−1, and
sj(c) which is the sum of all monomials of degree j in c1, . . . , ck.

THEOREM 4.6. Both dim C| M and dim C| R are independent of both
{Fi} and f and hence depend only on the weights (a,b, c,d), pro-
vided the dimensions are finite. Moreover, in this case, these are the
Buchsbaum–Rim multiplicity and are given by

dim C| M = dim C| R =
b
a
· τ(D) =

b
a
·

p
∑

j=0

sp−j(c) · σj(d) (10)

where a =
∏

ai and b =
∏

bi.
Remark. This theorem was proven in [D3] for the case of X = C| n.

A fairly simple modification of that proof gives this more general re-
sult. The theorem extends to the semi–weighted homogeneous case,
where for the initial parts of the fi and Fj , M and R are still finite
dimensional.

EXAMPLE 4.7. The natural properties of the functions σj and sj
(see [?]§2]D3) suggest that formulas as above expressed in terms of
them should have analogous forms in the nonweighted homogeneous
case where the σj and sj are replaced by appropriate invariants. For
example, in the homogeneous case with X = C| p so n = p, there are
no fi, and all ai = 0, ci = 0, so that all Fi are homogeneous with
all components of degree di. Then, the Buchsbaum–Rim multiplicity is
given by σn(d1, . . . , dn+k−1). We next see these have interpretations as
“higher multiplicities”.

5. Higher Multiplicities

Through singular Milnor fibers and numbers for nonlinear sections
of complete intersections, we can introduce higher multiplicities á la
Teissier for nonisolated complete intersections. Teissier [Te] defined for
isolated hypersurface singularities a series of higher multiplicities, the
µ∗– sequence µ∗ = (µ0, . . . , µn). Given f0 : C| n, 0 → C| , 0, if Π is a
generic k–dimensional subspace in C| n then f0|Π has an isolated singu-
larity and Teissier defines µk(f0) = µ(f0|Π), where µ denotes the usual
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Milnor number. Lê–Teissier [LêT] [Te3] further considered for general
(V, 0) ⊂ C| n, 0, the “k-th vanishing Euler characteristics”χ(π−1(z) ∩
V ∩ Bε), where π : V, 0 → C| k, 0 is the restriction of a generic linear
projection, z is sufficently general, and ‖z‖ and ε > 0 are sufficiently
small. They use the polar multiplicities combined with these vanishing
Euler characteristics relative to strata of a Whitney stratification to
compute topological invariants of nonisolated singularities.

For nonisolated complete intersections V, 0 ⊂ C| p, 0, we can define
higher multiplicities using the analogue of Teissier’s definition for the
hypersurface case. A Zariski open subset of k-dimensional subspaces
Π ⊂ C| p are geometrically transverse to V off 0 (which implies algebraic
transversality if k < h(V )). We view the inclusion i : Π → C| p as a
section of V and define µk(V ) = µV (i), the singular Milnor number
of the section i (if V is itself a nonlinear section, µp(V ) is its singular
Milnor number). Then, µk(V ) counts the number of singular vanishing
cycles for a perturbation it of the section i. If k is one less than the
codimension of the canonical Whitney stratum of V containing 0, then
the singular Milnor fiber of the section is the “complex link”of V as
defined by Goresky-MacPherson [GMc].

In the special case where V is an almost free divisor based on V ′, 0 ⊂
C| p′ , 0 via g0, Corollary 3.5 computes the higher multiplicities.

PROPOSITION 5.1. Suppose that (V, 0) is an almost free divisor based
on (V ′, 0) via g0. Let i : C| k, 0 → C| p, 0 be a linear section where k <
p, h(V ′). If νV ′(g0 ◦ i) is finite and minimum among all nearby linear
embeddings, then

µk(V ) = µV ′(g0 ◦ i) = νV ′(g0 ◦ i).

This proposition and Theorem 4.3 allow us to compute higher multi-
plicities for weighted homogeneous free divisors V, 0 ⊂ C| p. Let wt (yi) =
ai, with a1 ≤ a2 ≤ . . . ≤ ap. Let H be the weighted homogeneous
defining equation, and suppose weighted homogeneous generators ζi
for Derlog (H) have wt (ζi) = di.

PROPOSITION 5.2. Suppose that the k–dimensional section of (V, 0)
defined by y1 = . . . = yp−k = 0 is algebraically transverse to V off 0,
then

µk(V ) =
1
a′′

k
∑

j=0

sk−j(a′) · σj(d) (11)

where a′ = (a1, . . . , ap−k), a′′ =
∏p

i=p−k+1 ai and d = (d1, . . . , dp−1).

Several special cases are of particular interest.
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Lower Bound for Ae–codimension

As a consequence, Proposition 5.2 yields the minimumAe– codimension
for germs in the contact class.

COROLLARY 5.3. Let V = D(F ) be the discriminant of the versal
unfolding F : C| n, 0 → C| p, 0 of an ICIS f0. Suppose k < h(D(F )) and
the weighted subspace defined by y1 = . . . = yp−k = 0 is algebraically
transverse to V off 0. Then, the minimum Ae–codimension of germs
g : C| n′ , 0 → C| k, 0 in the same contact class as f0 is given by

minimum Ae–codimension = µk(D(F ))

EXAMPLE 5.4. Low codimension calculations suggest that for the
discriminant D(An) of the versal unfolding of an An singularity, the
sections defined by the n − k lowest weight unfolding parameters are
algebraically transverse to D(An) off 0. If this generally holds then
µk(D(An)) is given by (11), which can be computed to equal

(n−1
k

)

.
Then, by Corollary 5.3

(n−1
k

)

is the minimum Ae–codimension of a
germ g : C| n′ , 0 → C| k, 0 belonging to the An contact class.

Free and Almost Free Hyperplane Arrangements

Freeness plays an extremely important role for hyperplane arrange-
ments, see [OT1]. We consider A ⊂ C| p a free hyperplane arrangement.
The defining equation for A is homogeneous of the form Q =

∏

`i where
`i are linear forms defining the hyperplanes belonging to A. There are
homogeneous generators ζi for Derlog (A) with ζ0 the Euler vector field,
and ζi ∈ Derlog (Q), i > 0. Let wt (ζi) = di and let ei = di + 1. Then,
exp(A) = (e1, . . . , ep) are called the exponents of A (note e1 = 1).
An almost free arrangement A ⊂ is obtained as the linear section of
a free A. Because we are in the homogeneous case, Proposition 5.2 is
always applicable. By properties of τ(D), we may adjust weights for
the generators by decreasing all ai to zero and replacing di by ei and
compute higher multiplicities for almost free arrangements.

COROLLARY 5.5. ([?]Prop. 5.2]D4). Let A ⊂ C| p be an almost free
arrangement based on the free arrangement A. If exp′(A) = (e2, . . . , ep),
then

µk(A) = σk(exp′(A))

The higher multiplicities have a close connection with other invari-
ants of hyperplane arrangements such as the Mobius function of the
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arrangement evaluated at A, the Crapo invariant, etc [?]§5]D4 and
[?]§2]D10. We single out a key property:

Betti Numbers and Higher Multiplicities for Arrangements.

If A ⊂ C| p is a central arrangement, then the k-th Betti number of the
complement M(A) = C| p\A is given by

bk(M(A)) = µk(A) + µk−1(A) (12)

By this property together with Corollaries 5.5 and 3.5, we can com-
pute algebraically the Poincaré polynomial P (A′, t) of the complement
M(A′) for any almost free arrangement A′. Using this one can find
central arrangements in C| 3, which are (automatically) locally free in
the complement of 0, but which are not almost free. Hence, almost free
divisors and complete intersections, like ICIS, can not be characterized
by purely local conditions in the complement of a point.

As the preceding includes the free arrangement itself, we deduce
as a consequence [?]§5]D4 the factorization theorem of Terao, which
generalizes earlier results of Arnold [A1] and Brieskorn [B1] for Coxeter
arrangements.

THEOREM 5.6. (Terao’s Factorization Theorem [To3]). If A ⊂ C| p is
a free arrangement with exp(A) = (e1, . . . , ep), then

P (A, t) =
p

∏

i=1

(1 + eit)

Considering critical points of functions such as fλ1
1 · · · fλr

r with the fi
polynomial leads to considerably more complicated “nonlinear arrange-
ments”which can arise by replacing hyperplanes by hypersurfaces or by
intersecting a hyperplane arrangement with a smooth affine variety.

Suppose X, 0 ⊂ C| p is a homogeneous r–dimensional ICIS defined
by a polynomial germ f of multidegree d = (d1, . . . , dn−r). Let Xy =
f−1(y) be a global smooth Milnor fiber. If the free arrangement A is
transverse to X off 0, then A∩X is an almost free complete intersection
at 0. Moreover, for sufficiently general y, A is transverse to Xy, and
if both are “nondegenerate at infinity”, then A ∩ Xy is diffeomorphic
to the singular Minor fiber of (A ∩ X, 0) [D7] or [D10]. Then, A ∩
Xy defines a nonlinear arrangement on the smooth global complete
intersection Xy. The singular vanishing cycles correspond in the real
picture to “relative bounding cycles”for regions on Xy determined by
the nonlinear arrangement A∩Xy. The generalized Lê–Greuel formula
(Thm. 4.3) comnbined with Corollary 5.5 yields the number of such
cycles [?]Theorem 8.19]D4 and [D10].
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PROPOSITION 5.7. Suppose X ⊂ C| p is a homogeneous ICIS of mul-
tidegree d, and the free arrangement A is transverse to X off 0. Then

number of relative bounding cycles of (Xy, Xy ∩A) = d ·
r

∑

j=0

sj(d−1)µr−j(A)

where d =
∏n−r

i=1 di and d− 1 = (d1 − 1, . . . , dn−r − 1).

The formula in Proposition 5.7 involves invariants also defined for non-
free A. For the case of a single homogeneous hypersuface, Orlik–Terao
[OT3] obtained an equivalent version of this formula but expressed in
terms of the characteristic polynomial of A and valid for any A. Having
obtained the formula, it is then possible by different methods to prove
that Proposition 5.7 is valid for any A withour regard to freeness and
extend it to hypersurface arrangements [D10].

Remark. Besides the number of bounding cycles, such formulas also
then apply to determine the number of critical points for holomor-
phic functions of the form fλ1

1 · · · fλr
r which appear in hypergeometric

functions [Ao], [V], [OT2], and [D7].

6. Relation with Buchsbaum-Rim Multiplicities

We observed that formulas such as in Proposition 5.7, although arrived
at initially as special cases, may remain valid without freeness. As we
relax the condition of freeness for the divisor or complete intersection
V , we ask what form the formulas will take for the singular Milnor
number or its relative version, higher multiplicities, etc. Then, lengths
of modules must be replaced by more general invariants. Gaffney’s
work shows the importance of Buchsbaum–Rim multiplicities as invari-
ants of modules. We note several important connections already estab-
lished between singular Milnor numbers, the algebraic Buchsbaum–Rim
multiplicities, and the geometric higher multiplicities.

1. First, all of the computations of singular Milnor numbers are in
terms of lengths of determinantal modules on complete intersec-
tions. These modules are extended normal spaces to various groups
G of equivalences. By results of Buchsbaum–Rim [BRm], these
lengths are Buchsbaum–Rim multiplicities, which we denote by
mBR. Hence,

µV (f0) = mBR(NGe · f0) (13)

where for complete intersections we replace µV (f0) by a relative
singular Milnor number.
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2. Second, Theorem 4.6 gives a general expression for mBR(M) in the
(semi-) weighted homogeneous case, where M is a determinantal
module on a (possibly nonisolated) complete intersection X, 0.

3. Third, in §5 we associated to certain modules M = Derlog (V ),
geometric higher multiplicities µk(V ). For V, 0 a weighted homoge-
neous free divisor, these are again computed as Buchsbaum–Rim
multiplicities of certain related modules.

4. Fourth, in certain cases we are able to express Buchsbaum–Rim
multiplicities back in terms of higher multiplicities.

When M = Derlog (V ) is not free, the preceding no longer hold for
lengths of the KV,e or KH,e normal spaces. We ask which invariants of
the normal spaces will relate to the singular Milnor numbers and higher
multiplicities. In particular, can we compute the (relative) singular
Milnor number as the Buchsbaum–Rim multiplicity of the original KV,e
or KH,e normal spaces for general complete intersections?

Alternately, we can consider free submodules M ′ ⊂ Derlog (V ) which
are “good approximations”to Derlog (V ) (see §10 and §11). Can we ex-
tend the method of computing higher multiplicities for M = Derlog (V )
to more general free submodules of M with the same cosupport? When
will these then have properties analogous to those for the geometric
situation? Then, we seek relations between the invariants for the ap-
proximations, the algebraic invariants of Derlog (V ), and topological
invariants of V .

III Topology of Singular Milnor Fibers via Logarithmic
Forms

7. De Rham Cohomology of Free and Almost Free Divisors

Suppose V0, 0 ⊂ C| n, 0 is a divisor with reduced defining equation h.
There are several natural questions concerning the topology of (V0, 0)
and its complement which can possibly be addressed using differential
forms. These include computing the cohomology of:

1. the complement C| n\V0;

2. the smooth Milnor fiber of h;

3. the singular Milnor fiber of an almost free divisor V0 based on the
free divisor V, 0.
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In the case of 2) and 3), this would provide a basis as in [B2] and [Gr]
for introducing a Gauss–Manin connection.

For 1), by general results of Grothendieck [Grk] and Griffiths [Grf]
the cohomology of the complement of a divisor can be computed using
the complex of meromorphic forms on the complement. For Coxeter ar-
rangements, Arnold [A1] and Brieskorn [B1] computed the cohomology
of the complement of the arrangement using logarithmic forms. This
was extended to general hyperplane arrangements, by Orlik–Solomon
[OS1] building on Brieskorn’s ideas. For an arrangement A = ∪Hi ⊂
C| n, let Hi be defined by the linear form `i. These results express the
cohomology of the complement as the quotient of an exterior alge-
bra R(A) on generators ωi = d`i/`i by the ideal generated by the
relations rijk = ωi ∧ ωj + ωj ∧ ωk + ωk ∧ ωi, for triples of Hi with
codim (Hi ∩Hj ∩Hk) = 2.

Castro, Mond and Narvaez [CMN] show that this result has a nat-
ural analogue for free divisors using the complex of logarithmic forms.
They consider free divisors which are locally weighted homogeneous
(i.e. locally weighted homogeneous at each point for some choice of
local coordinates).

THEOREM 7.1. ([CMN]). Let V, 0 ⊂ C| p be a free divisor which is
locally weighted homogeneous, then for all k

Hk(C| p\V : C| ) ' Hk(Ω•(logV ))

Unfortunately, in general this result does not even extend to the
simplest almost free divisors such as isolated hypersurface singularities
V, 0 ⊂ C| n, 0. Holland and Mond [HMo] define an obstruction, the “log-
arithmic defect”, δ(logV )0, which equals dimGrW

n Hn−1(F ;C| ) for the
weight filtration for the mixed Hodge structure on the Milnor fiber F of
V [St]. If δ(logV )0 6= 0, the analogue of Theorem 7.1 fails. They show
using results of Steenbrink [St] that even for the simple singularities
Ak, Dk, and Ek, there are values of n and k for which it fails.

For a free divisor V, 0 ⊂ C| p with singular set Z = sing(V ), Alexan-
drov has obtained several results computing local cohomology using
Ω•(logV ) as described in [Av2]. He computes the Poincaré polynomials
of H•

Z(Ωq
V ) and H•

Z(Ωq(logV )) for weighted homogeneous V . Second,
he applies ideas of Kunz to obtain a form of Grothendieck local duality
for the local cohomology of free divisors [?]Thm. 2.3]Av2, obtaining
a perfect pairing between the infinite dimenional spaces T 1

V and the
torsion module Tors Ω1

V , both of which are isomorphic to OC| p,0/J(h)
(with J(h) denoting the Jacobian ideal of h). Third, he relates Ω•(logV )
to the complex of regular meromorphic differential forms ω•−1

V , ob-
taining an exact sequence [?]§4]Av2 generalizing the classical sequence
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involving the Poincaré residue for a smooth divisor.

0 −−−→ Ωq
C| p,0 −−−→ Ωq(logV ) res−−−→ ωq−1

V −−−→ 0 (14)

As a result of (14) he also obtains the Poincaré polynomial of ωq−1
V . In

the special case of an isolated hypersurface germ V, 0 of dimension ≥ 2,
he relates µ and τ to the dimensions of the cohomology of the complex
of sections H∗(Ω•(logV )) to obtain [?]Cor. 3]Av2

dim C| Hp(Ω•(logV )− dim C| Hp−1(Ω•(logV ) = µ− τ

exhibiting the close relation between H∗(Ω•(logV )) and other invari-
ants of V .

de Rham Cohomology of the Singular Milnor Fiber

¿From our point of view, an especially important result was obtained
by Mond [Mo3]. He identifies the correct way to use Ω•(logV ) to modify
the complex of Kähler forms on an almost free divisor to obtain a com-
plex of forms which computes the cohomology of the singular Milnor
fiber.

For a divisor V, 0 ⊂ C| p, 0 defined by h, we have the complex of
Kähler forms

Ω•V = Ω•C| p,0/(hΩ•C| p,0 + dh ∧ Ω•−1
C| p,0) (15)

Mond observed that Ω•V has torsion and that the torsion can be iden-
tified as hΩ•(logV )/(hΩ•C| p,0 + dh ∧ Ω•−1

C| p,0). This led him to define

Ω̌•V = Ω•V /hΩ•(logV ). Then, Mond observes that by Theorem 2.3, the
complex Ω̌•V has properties analogous to those of Ω•(logV ). Specifically,
exterior differentiation induces a differential on Ω̌•V so it is a complex;
and it is preserved under both Lie deriviative by and inner product
with vector fields in Derlog (V ). If V, 0 is a free divisor, although Ω̌k

V
is no longer free, he shows Ω̌k

V is a maximal Cohen–Macaulay module.
Moreover, Mond shows

PROPOSITION 7.2. For a divisor V, 0 ⊂ C| p, 0, Ω̌k
V = 0 for k ≥ p;

and if V, 0 is locally weighted homogeneous, then Ω̌•V is a resolution of
C| V . Hence, if U is a Stein open subset and V ⊂ U is locally weighted
homogeneous at each point, then Hk(Γ(Ω̌•V )) = Hk(V ;C| ) for all k.

To transfer this structure to almost free divisors, we note that a
defining germ f0 : C| n, 0 → C| p, 0 for an ICIS is naturally a smooth-
ing, so for y /∈ D(f), f−1

0 (y) ∩ Bε is the smooth Milnor fiber. In
our case of a nonlinear section f0 of V defining the AFD (V0, 0), we
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must instead consider a stabilization of f0. Let f : C| n+q, 0 → C| p, 0
be a deformation which is a submersion at 0 (Mond considers other
“admissible”deformations, and then further extends them to obtain
such a deformation; however, the singular Milnor fibers will be the
same). Then, by e.g. the versality theorem for KV equivalence, V =
f−1(V ), 0 ⊂ C| n+q, 0 is diffeomorphic to V ×C| r, 0, for r = n− p + q. If
n < hn(V ), then algebraic and geometric transversality are the same.
Hence, by the parametrized transversality theorem, for almost all val-
ues u ∈ C| q, fu(x) = f(x, u) is algebraically transverse to V . The set
of values u where fu fails to be transverse form the KV –discriminant
DV (f), see §8 (Mond calls this the logarithmic discriminant).

Let π : V, 0 → C| q, 0, be the restriction to V of the projection
C| n+q, 0 → C| q, 0; this is the analogue of the ICIS germ f0. For ε > 0
and u /∈ DV (f) both sufficiently small, π−1(u) ∩ Bε = f−1

u (V ) ∩ Bε is
a singular Milnor fiber for f0. Then, Mond introduces the complexes
which serve as analogues of those for ICIS (compare [Gr] or [Lo])

Ω̌•V0
= Ω•C| n,0/〈f

∗
0 (hΩ•(logV ))〉

Ω̌•V/C| q = Ω•
C| n+q ,0

/
(

〈f∗(hΩ•(logV ))〉+
∑

dui ∧ Ω•−1
C| n+q ,0

) (16)

where “〈M〉”now denotes the ideal in the exterior algebra generated
by M . Moreover, by applying the analogue of the Poincaré Lemma
[?]Lemma 3.10]Mo3 when f is transverse to V , we can replace 〈f∗(hΩ•(logV ))〉
by 〈(h ◦ fΩ•(logV))〉.

There are three crucial properties which Mond establishes:

1.
Rkπ∗(C| V)⊗C| OC| q ' Hk(π∗(Ω̌•V/C| q)) outside DV (f)

2. there is an isomorphism of stalks at 0,

Hk(π∗(Ω̌•V/C| q))0 ' π∗(Hk(Ω̌•V/C| q))0 for all k > 0;

3. the sheaves Hk(π∗(Ω̌•V/C| q)) are coherent for all k.

The coherence property 3) is crucial for providing a basis of local
sections which generate Hk(π∗(Ω̌•V/C| q))u at u ∈ DV (f). By 1) this
explicitly gives a basis for the de Rham cohomology of the singular
Milnor fiber over u. The earlier results of Brieskorn and Greuel used the
extension of the germ to a proper mapping to obtain coherence. Mond
instead applies a result of Van Straten [VS2]. Then, by an argument
which generally follows that for ICIS given in [?]Cor. 8.8]Lo, Mond
proves
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THEOREM 7.3. Let V0, 0 ⊂ C| n, 0 be an almost free divisor defined
by a nonlinear section f0 of V, 0. Then, the deRham cohomology of a
singular Milnor fiber at u for a stabilization f is computed as the fiber of
the sheaf H∗(π∗(Ω̌•V/C| q)) at u. It is nonzero only in dimension n−1 and

its rank is given by the rank of the stalk at 0, dim C| Hn−1(π∗(Ω̌•V/C| q)0).

The earlier properties imply that Ω̌p−1
V0

has torsion and, Theorem
7.3 allows the singular Milnor number to be computed in the weighted
homogeneous case as dimTorΩ̌p−1

V0
.

The singular Milnor fiber can be triangulated, so the vanishing cycles
can be represented by a union of simplices. Hence, we can still integrate
forms over these cycles. This then leads to Mond’s construction of the
Gauss–Manin connection for a stabilization of an almost free divisor
with properties analogous to those of ICIS, especially that it has a
regular singularity along the KV –discriminant [?]§6]Mo3. This allows
Mond to extend a number of formulae valid for ICIS [Gr] to the singular
Milnor fiber. These results allow for the possibility that many of the
earlier results can be extended explicitly using De Rham cohomology.

IV Discriminants

8. Discriminants for Deformations of Sections

Among the original examples of free divisors in Theorem 2.2, are dis-
criminants for versal unfoldings of ICIS, and bifurcation sets for isolated
hypersurface singularities. We explore the general mechanism which
produces free divisors in many different situations, which includes both
of these examples. As mentioned earlier, there are criteria of Saito and
Alexandrov for verifying the a hypersurface singularity is a free divisor.
In addition, there is a criterion of Goryunov [Go2] for functions on
space curves: µ = τ implies the discriminant of the versal unfolding is
a free divisor. Mond and Van Straten then showed that µ = τ always
holds for functions on space curves, implying that the discriminant is
always a free divisor. Van Straten [VS2] had earlier shown, using Saito’s
criterion, that the discriminants of versal defomations of space curves
are free divisors.

Using a different approach and Van Straten’s result, it was shown
in [D6] that the bifurcation set for smoothings of space curves are
free divisors. In fact, this last result applies a general method based
on representing various maps, unfoldings, etc. as sections of varieties
V and giving sufficient conditions that the KV –discriminant for the
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versal unfolding of such a section is a free divisor. The approach is
summarized.
Freeness Principle for Discriminants

Cohen–Macaulay of codim 1 + Genericity of Morse Type
Singularities =⇒ Freeness of Discriminants (17)

We explain how this principle applies to a wide variety of situations
and discuss what happens as each condition fails.

Given V, 0 ⊂ C| p, 0 and a germ f0 : C| n, 0 → C| p, 0 which has finite
KV –codimension, let F : C| n+q, 0 → C| p+q, 0 be a KV –versal unfolding
of f0. Using local coordinates u for C| q, we write F (x, u) = (F̄ (x, u), u),
and denote fu(x) = F̄ (x, u) : C| n, 0 → C| p, 0 as a function of x . Also,
we denote by π the projection C| n+q, 0 → C| q, 0.

DEFINITION 8.1. The KV –critical set of F , CV (F ), consists of points
(x0, u0), such that the germ fu0 is not algebraically transverse to V at
x0. It can equivalently be defined as

CV (F ) = supp(NKV,un,e · F )

(where NKV,un,e · F is the extended normal space for the action of the
unfolding group KV,un). The KV –discriminant of F is then defined to
be DV (F ) = π(CV (F )).

We apply Teissier’s method [Te2] for associating a non–reduced
structure to the discriminant via the 0–th Fitting ideal.

It can be shown [?]§2]D7 that as f0 has finite KV –codimension,
π|CV (F ) is finite to one. Hence, by Grauert’s theorem DV (F )) =
π(CV (F )) is the image of an analytic subset CV (F ) under a finite map,
hence is also an analytic germ of the same dimension as CV (F ). Second,
by [?]Prop. 2.4 and Cor. 2.5]D7 (Mond gives an equivalent formulation),
we obtain

PROPOSITION 8.2. If V is a free divisor and F is a KV –versal
unfolding of f0 (or at least F̄ is algebraically transverse to V at 0)
and n < hn(V ), then, both CV (F ) and DV (F ) are Cohen–Macaulay of
dimension q − 1.

This is half of the condition (17). To obtain the other half ,we define

DEFINITION 8.3. We say that a free divisor V, 0 ⊂ C| p, 0, generically
has Morse–type singularities in dimension n if: all points on canonical
stata of V of codimension ≤ n + 1 have Morse singularities of nonzero
exceptional weight type (which we do not define here); and any stratum
of codimension > n + 1 lies in the closure of a stratum of codimension
= n + 1.
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This condition combined with Proposition 8.2 allows us to apply Saito’s
criterion to obtain a general criterion for freeness of KV –discriminants.

THEOREM 8.4. ([?]Thm. 2]D7). Let V, 0 ⊂ C| p, 0 be a free divisor
which generically has Morse–type singularities in dimension n where
n < hn(V ). Then, the KV –discriminant of the versal unfolding for any
f0 : C| n, 0 → C| p, 0 is a free divisor. Moreover,

Derlog (DV (F )) = module of KV –liftable vector fields.

By a KV –liftable vector field η ∈ θq we mean there are

ξ ∈ OC| n+q ,0{
∂

∂x1
, . . . ,

∂
∂xn

} and ζ ∈ OC| n+q ,0{ζ1, . . . , ζp}

satisfying:
(ξ + η) (F̄ ) = ζ ◦ F̄ (18)

9. Morse-type Singularities for Sections and Mappings on
Divisors

To apply Theorem 8.4, we must verify for a given V the genericity of
Morse–type singularities. We first illustrate the applicability in the case
of bifurcation sets of finitely A–determined map germs f0 : C| n, 0 →
C| p, 0. By (1.1), f0 is obtained as the pullback of the stable unfolding
F of f0 by an embedding g0. Furthermore, by Theorem 1.5, f0 is a
stable multigerm over a point y ∈ D(F ) iff g0 is transverse to D(F )
at y. Hence, for an unfolding f(x, v) = (f̄(x, v), v) of f0 induced by
an unfolding g(y, v) = (ḡ(y, v), v) of g0, fv(x) = f̄(x, v) is stable iff
gv(x) = ḡ(x, v) is transverse to D(F ). Thus, the bifurcation set of
f is the KD(F )–discriminant of g. Thus, it is sufficient to determine
when the discriminants D(F ) generically have Morse–type singularities.
Using the results on Ae–codimension 1 germs and multigerms, we can
identify the following class [?]§6]D7.

DEFINITION 9.1. We say that a finitely A–determined (multi)germ
f0 : C| n, S → C| p, 0 with n ≥ p belongs to the distinguished bifurcation
class of (multi)germs if it satisfies one of the following :

1. “general case”: n 6= p + 1 and p ≤ 4;

2. “worse case”: n = p + 1 and p ≤ 3;
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3. “best cases”:

(i) corank 1 (multi)germs such that :

(a) n = p + 1 and p ≤ 6 or

(b) n > p + 1 and p ≤ 5

(ii) Σn−p+1 and Σ2,(1) (multi)germs without restriction on n ≥ p.

For example, the Σn−p+1 germs are germs in the K–equivalence class
of the Ak germs for n ≥ p; and the Σ2,(1) germs are those in the K–
equivalence class of I2,b, consisting of the germs f0(x, y) = (xy, x2 +yb)
for n = p.

Then, the Terao and Bruce result extends as follows [?]Thm. 3]D7.

THEOREM 9.2. Let f0 : C| n, S → C| p, 0 be a finitely A–determined
(multi) germ which belongs to the distinguished bifurcation class. Then,
the bifurcation set of its A–versal unfolding is a free divisor.

David Mond and Andrew DuPlessis obtained an equivalent version of
this by directly using A–equivalence.

Also, {0} ⊂ C| p generically has Morse–type singularities (i.e. the
usual Morse singularities) which yields for p = 1 the freeness of (the
usual) discriminants of versal unfoldings of isolated hypersurface sin-
gularities. There are a number of other examples of free divisors which
generically have Morse–type singularities. These are given in [?]§6-9]D7,
leading to the freeness of various discriminants and bifurcation sets.

One revealing example is the Manin–Schechtman discriminantal ar-
rangement which naturally extends the braid arrangement [MS]. For a
central general position hyperplane arrangement A = ∪n

i=1Hi ⊂ C| k, it
is obtained as the pullback of the Boolean arrangement An ⊂ C| n by a
linear embedding ϕ. The associated discriminantal arrangement B(n, k)
consists of the set of normal translation vectors for the hyperplanes
Hi which when applied, do not give a general position arrangement.
However, unlike the braid arrangement, B(k + 3, k) is not free when
k ≥ 2 Orlik–Terao [?]Prop. 5.6.6]OT1.

COROLLARY 9.3. Let A ⊂ C| k be a central general position arrange-
ment defined by ϕ : C| k → C| n. Then, the KAn–discriminant of the
versal unfolding of ϕ is a free divisor.

Then, B(n, k) is the intersection of DAn(ϕ) with the linear subspace
of translationdeformations and the remaining unfolding parameters (at
least for low (n, k)) give equisingular KAn–deformations. Thus, DAn(ϕ)
is topologically equivalent to a suspension of B(n, k), even though
DAn(ϕ) is free while B(n, k) is not.
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EXAMPLE 9.4. In the opposite direction, an example of a free divisor
without a Morse–type singularity is given by the free hyperplane ar-
rangement A ⊂ C| 3 defined by Q = xyz(x−y). A Morse–type singularity
of dimension 2, if it existed, would be obtained as the inclusion of a
generic hyperplane section. However, this gives an arrangement of 4
lines in C| 2 with singular Milnor fiber having 2 singular cycles (see
[?]§4, 9]D7). This corresponds to the section having KA,e–codimension
2.

These methods can be adjusted to apply to the dual case of the
equivalence of mappings f0 : C| n, 0 → C| p, 0 fixing a divisor V, 0 ⊂
C| n, 0 in the source. We denote the contact group preserving V by VK.
For certain special free divisors V and simple functions f0, Arnold
[A3], Lyaschko [Ly], Zakalyukin [Z], and Goryunov [Go2] prove that
the discriminant is a free divisor. What is surprising is that this fails
in general even with V free, and it does not depend on whether we
consider functions or ICIS map germs. Moreover, the freeness of the
VK–discriminant depends on whether generically V has Morse type
singularities. This is because the “Morse type singularities”for VK–
equivalence can be canonically identified with the Morse type singu-
larities for KV –equivalence [?]§6]D9. An equivalent version of example
(9.3) shows that the discriminant will not be free for the module of
VK–liftable vector fields. We do obtain [?]§6]D9 (with consequences
for VA and VR)

THEOREM 9.5. If V, 0 ⊂ C| n, 0 is a free divisor which generically has
Morse–type singularities in dimension n−p, then the VK–discriminant
of the VK–versal unfolding of an ICIS germ f0 (of finite VK–codimension)
is a free divisor with

Derlog (DV K(F )) = module of VK–liftable vector fields.

10. Beyond Freeness - Free* Divisor Structures

When either of the two conditions in (17) fails for some group of equiv-
alences, we can no longer conclude that the appropriate discriminants
are free. We explain how we must introduce new notions reflecting
the weaker structure that does remain. We restrict our remarks to the
specific question of whether the module of liftable vector fields defines a
free divisor structure, reflecting the intrinsic features of the equivalence.
There are always cases such as isolated curve singularities in C| 2 which
are always free by [Sa], unrelated to how they are obtained.
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First we relax the condition of genericity of Morse type singulari-
ties. For example (9.4), the KA–discriminant has a nonreduced struc-
ture resulting from the generic singularities having KA,e–codimension 2
[?]§9]D7. If the discriminant is Cohen–Macaulay of codimension 1 then
at least the discriminant has a “free* divisor”structure defined by the
liftable vector fields.

DEFINITION 10.1. By a hypersurface germ V, 0 ⊂ C| p having a free*
divisor structure on C| p′, where p′ = p + m ≥ p, we shall mean: for
V ′ = V ×C| m ⊂ C| p′ we are given an O

C| p′ ,0
– submodule Derlog ∗(V ) ⊆

Derlog (V ′) which satisfies:

1. Derlog ∗(V ) is a free O
C| p′ ,0

–module of rank p′; and

2. supp(θp′/Derlog ∗(V )) = V ′

In fact there are many ways, including trivial ones, of putting a free*
divisor structure on certain hypersurfaces. Their usefulness depends
on certain measures of nontriviality and on the intrinsic properties of
Derlog ∗(V ). By suspending V we can assume Derlog ∗(V ) ⊂ Derlog (V ).
This raises the question of how one can understand properties of nonfree
submodules of θp or more generally Op

C| n,0 using free submodules which
are in an appropriate sense a “good approximation”.

For example, we know isolated surface singularities V, 0 ⊂ C| 3, 0
are never free divisors, but are always almost free divisors. Although
nonisolated surface singularities need not be free, any weighted ho-
mogeneous surface singularity has a natural “pfaffian ” free* divisor
structure [?]§1]D8.

Also, by the proof of Theorem 8.4 with n < hn(V ), but without
having genericity of Morse–type singularities, the KV discriminant is
a free* divisor defined by Derlog (V ) [?]Thm. 1]D8. For the various
consequences mentioned in Example (9), if the conditions are relaxed
so genericity of Morse type singularities fails, then at least the discrim-
inants are free* divisors defined by the modules of liftable vector fields.
For example, all finitely A–determined germs in the nice dimensions
(in the sense of Mather [M-IV]) have bifurcation sets which are free*
divisors [?]§1]D8 for the module of A–liftable vector fields.

Importantly, we can still compute the vanishing topology for free*
divisors using a modification of Theorem 3.3, where we must correct
for “virtual singularities”for the Derlog ∗(V ) structure [?]§4]D8.
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11. Cohen-Macaulay Reductions for Groups of Equivalences

If we relax instead the first condition in (17), then the group G of
equivalences does not have the correct algebraic structure to ensure
that the discriminant is Cohen–Macaulay of codimension 1.

EXAMPLE 11.1. Several examples where this occurs are for sections
of free complete intersections of codimension ≥ 2 (with the exception
of {0} ⊂ C| p), the relative case of the intersection of an ADF on an
AFCI, and the case of functions on complete intersections where either
we allow both the function and complete intersection to deform or we
fix the complete intersection.

In these cases which are considered in [D8] and [D9], we introduce a
“Cohen–Macaulay reduction”of the original group, which allows us to
keep the same discriminant but with a different structure.

DEFINITION 11.2. Given a geometric subgroup G of A or K which has
geometrically defined discriminants, a Cohen–Macaulay reduction of G
(abbreviated CM–reduction) consists of a geometric subgroup G∗ ⊂ G
which still acts on F (and Fun) such that:

1. G∗ is Cohen–Macaulay (i.e. for a G∗–versal unfolding F on q pa-
rameters, the normal space NG∗une · F viewed as OC| q ,0–module is
Cohen–Macaulay, and whose support, the discriminant DG∗(F ),
has codimension 1);

2. f ∈ F has finite G∗–codimension iff it has finite G–codimension;

3. if F is a G∗–versal unfolding on q parameters, then as OC| q,0–
modules,

supp(NG∗un,e · F ) = supp(NGun,e · F ) (19)

As far as we have determined, this is not a reduction in the sense of Rees
[Re], [KR] and Gaffney [GK]. In earlier results, the RHS in Theorems
4.2, 4.3 and 4.4 are normal spaces for CM–reductions.

We then establish two key results regarding CM-reduction [?]Thm.
2 and 3]D9.

THEOREM 11.3. Suppose a group G has a CM–reduction, then

1. the G–discriminants for G–versal unfoldings are free* divisors for
the module of G∗–liftable vector fields; and

2. provided G generically has Morse–type singularities which are G∗–
liftable, the G –discriminants are free divisors.
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In particular, for the examples in (11.1), either they have CM–
reductions or are Cohen–Macaulay. Hence, their corresponding G–discri-
minants are free* divisors. Moreover, we may apply the theorem and
conclude that the corresponding G–discriminants of versal unfoldings
are free divisors for the following: ICIS, which are sections of {0} ⊂ C| p

(recovering Looijenga’s result); the relative cases of the intersection
of an ADF on an ICIS; functions on ICIS where we allow both the
functions and ICIS to deform (related to a result of Mond–Montaldi
[MM]); or a complete intersection with boundary singularity a free
divisor, with appropriate restrictions on the free divisor generically
having Morse–type singularities (9.5).
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Te. B. Teissier, Cycles évanescents, sections planes, et conditions de Whitney,
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