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Abstract

We consider “swept regions”Ω and “swept hypersurfaces”B in R
n+1 (and especially R

3) which are s disjoint union of
subspaces Ωt = Ω∩Πt or Bt = B∩Πt obtained from a varying family of affine subspaces {Πt : t ∈ Γ}. We concentrate
on the case where Ω and B are obtained from a skeletal structure (M, U). This generalizes the Blum medial axis M

of a region Ω, which consists of the centers of interior spheres tangent to the boundary B at two or more points, with
U denoting the vectors from the centers of the spheres to the points of tangency. We extend methods developed for
skeletal structures so they can be deduced from the properties of the individual intersections Ωt or Bt and a relative
shape operator Srel, which we introduce to capture changes relative to the varing family {Πt}.

We use these results to deduce modeling properties of the global B in terms of the individual Bt, and determine
volumetric properties of regions Ω expressed as global integrals of functions g on Ω in terms of iterated integrals over
the skeletal structure of Ωt then integrated over the parameter space Γ.

Key words: swept regions, swept surfaces, Blum medial axis, swept skeletal structures, Whitney stratified sets, radial shape
operator, relative shape operator, skeletal integrals

Introduction

Let Ω ⊂ R
n+1 be a region with boundary B, or let

B denote a hypersurface. Considerable recent work
has made use of medial representations for Ω and B
for solving a variety of computer imaging problems,
see e.g. the survey [P] and the book [PS]. Skele-
tal structures provide a generalized form of medial
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structure, which includes both the Blum medial axis
[BN] and generalized offset (hyper)surfaces, and can
be used to analyze the chordal locus models of Brady
and Asada, [BA] and arc-segmentmedial axis of Ley-
ton [Le].

The Blum medial axis M of a region Ω with
smooth generic boundary B, consists of the locus of
centers of spheres contained in Ω and tangent at two
or more points (or with degenerate tangency). On
M is a multivalued vector field U from points on M
to the points of tangency. If we appropriately relax
the conditions required for (M,U), we still obtain a
“skeletal structure”(see [D1]). These skeletal struc-
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tures have been used to analyze the smoothness
of B and determine the local, relative, and global
geometry of Ω and B using “radial and edge shape
operators”defined for these skeletal structures (see
[D1] - [D6], and Chap 3 of [PS]).

In this paper we consider skeletal structures for
regions or hypersurfaces which are “swept-out”by a
family of subspaces (see e.g. figure 1). For such re-
gions, we shall see how we may exploit the swept
structure to compute the corresponding mathemat-
ical operators and apply the preceding results to
determine smoothness and geometric properties of
such regions or hypersurfaces. Although the imme-
diate applications for imaging are for regions and
their boundaries in R

3, we carry out the computa-
tions for arbitrary dimensions, demonstrating the
general form of these results.

Πt

Ω

Ω t

Fig. 1. Swept region Ω by a family of varying affine subspaces
Πt and associated swept boundary

Specifically, we consider a swept decomposition of
the region Ω or the hypersurfaceB which is obtained
by the intersection of Ω or B with a family of (n−k+
1)–dimensional affine subspaces Πt (parametrized
by a k–dimensional submanifold Γ) so that Ω, resp.
B, is a disjoint union Ωt = Ω∩Πt, resp. Bt = B∩Πt.
Then, we refer to Ω as a swept region or B as a swept
(hyper)surface.

Conversely, for modeling purposes we may ask
when a family of (n−k)–dimensional smooth mani-
folds Bt ⊂ Πt, which are defined using skeletal struc-
tures (Mt, Ut) in Πt, together will form a smooth hy-
persurface B. The answer depends on both geomet-
ric properties of the Bt and the variation properties
of the family of affine subspaces {Πt}.

A second question concerns “volumetric proper-
ties”of such a swept region Ω. Such properties are
given by various global geometric invariants of Ω
which can be expressed as integrals over regions of
Ω. We will use the computations of the operators to-

gether with integral results from [D4] to give general
expressions for these integrals as iterated integrals
over either the family of skeletal structures (Mt, Ut)
or over the swept decomposition {Ωt} of Ω. For ex-
ample, such integral representations have been used
to provide criteria for matching objects in a popu-
lation, see [TG], [T].

A third question concerns regions such as “ir-
regular tube-like”structures. A tube-like structure
should be representable by a series of slices through
it; however, the irregularity means that there is
no natural center curve for the tube so the slices
are unlikely to be orthogonal to any chosen central
curve (or alternative medial structure). A medial-
type representation using a central curve leads to
a notion of a “contracted medial structure”, which
involves a lower dimensional skeletal set, with a
complementary dimensional family of radial vec-
tors. We also answer the corresponding questions
concerning smoothness and volumetric properties
for (hyper)surfaces and regions defined by these
structures.

To answer these questions, we introduce a synthe-
sis of these two ideas of swept regions and surfaces
and the skeletal representations, to deduce model-
ing properties of swept surfaces and deduce formulas
for global integral properties of such swept regions.
Specifically, for a swept surface B (and swept region
Ω) we consider the case when we have a skeletal rep-
resentation of each Ωt and Bt by (Mt, Ut) so that
M = ∪tMt and U = ∪tUt defines a skeletal struc-
ture for Ω and B. We shall refer to this as a swept
skeletal structure. Note that even if each Mt is the
Blum medial axis of Ωt, then (M,U) will in general
only be a skeletal structure. To capture the geomet-
ric properties in such situations, we shall introduce
a “relative shape operator”which measures how U

varies in the complementary direction to Πt.
First, for a swept skeletal structure (Mt, Ut), we

will determine the associated radial shape operator
associated to (M,U) in terms of the radial shape op-
erators Srad(t) for each (Mt, Ut) together with the
“relative shape operator”Srel. Second, in the case
of swept surfaces in R

3, we show in Proposition 2.8
that the principal edge curvature κE (the general-
ized eigenvalue of the edge shape operator) equals
the relative principal curvature κrel (which gives the
relative shape operator in this case). Third, using
the preceding and the results from [D1] and [D3], we
deduce sufficient conditions (Theorem 3.1) for the
smoothness of the associated boundary surface B in
R

3 (given the smoothness of each Bt) solely in terms
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of κrel. This has been applied to modeling crest re-
gions of surfaces [HPD] and smoothness of models
for more general skeletal structures in [H]. Fourth,
we also apply these results to a contracted skeletal
structure allowing, e.g. a formulation for properties
of irregular- type generalized tubes along a skeletal
curve. Lastly, we also apply the results from [D4] to
express integrals of functions over (subregions of) Ω
as iterated integrals of functions over regions in each
Πt, then integrated over Γ with respect to a kernel
computed from the relative shape operator (Theo-
rems 4.5 and 4.12).
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1. Swept Representations of Regions,
Hypersurfaces, and Skeletal Structures

Swept Regions and Swept Hypersurfaces

Suppose that Ω ⊂ R
n+1 is a compact region with

smooth generic boundary B, or more generally B is
a hypersurface in R

n+1. We define what we mean by
smooth families of affine subspaces, and then by Ω
or B being represented by such a smooth family as
a swept region or swept hypersurface.
Definition 1.1 A parametrized family {Πt}t∈Γ,
for Γ a k–dimensional submanifold of R

n+1, will be
called a smooth family of (n − k + 1)–dimensional
affine subspaces of R

n+1 if there is an (n − k + 1)–
dimensional vector bundle E on Γ and a smooth
map γ : E → R

n+1 such that on each fiber γt :
Et → R

n+1 is an affine embedding with Πt = γt(Et)
transverse to Γ at t ∈ Γ .
Definition 1.2 A region Ω is represented as a
swept region by the smooth family of (n − k + 1)–
dimensional affine subspaces {Πt}t∈Γ if:
i) any point in Ω lies in exactly one Πt;
ii) the map γ : E → R

n+1 defining the family Πt is
a diffeomorphism on γ−1(Ω); and
iii) if we identify Γ with the zero section of E, then
the map γ : Γ → R

n+1 is transverse to each Πt at all
points of Ω.
We say {Πt}t∈Γ is a smooth swept family on Ω.

Likewise, a hypersurface B is represented as a
swept hypersurface by {Πt}t∈Γ if in the preceding,
the conditions hold with Ω replaced by B.

We shall frequently identify Γ with its image in
R

n+1.

Πt

Γ

Fig. 2. Smooth Family of affine spaces along the manifold Γ

If a region Ω with smooth boundary is represented
as a swept region, then its boundary is represented as
a swept surface. If a hypersurface B is compact, then
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by the parametrized transversality theorem and the
openness of transversality, the set of t ∈ Γ such that
Πt is transverse to B is open and dense in Γ, with
complement of measure zero. For such t, Bt = B∩Πt

is a smooth manifold of dimension n − k and there
is an open dense subset of B which belongs to the
union of such manifolds. If B is the boundary of the
compact region Ω which is represented as a swept
region by {Πt}t∈Γ, then for an open dense set of
t ∈ Γ, Ωt = Ω ∩ Πt is a region in Πt with smooth
boundary Bt. Then, there is open dense subset of Ω,
which is a union of such regions, whose complement
in Ω has measure zero.
Remark 1.3 In all that follows, we will on numer-
ous occasions also consider local versions of swept
representations of objects, which hold on an open set.
We will frequently refer to such local swept repre-
sentations without further discussion.
Example 1.4 The simplest example is when all Πt

are parallel translates and Γ is a linear subspace or-
thogonal to the Πt. Then, we are just taking parallel
slices.

A second example is when Γ is a smooth k–
dimensional submanifold of R

n+1 and Πt is the
orthogonal affine complement to TtΓ and passing
through t. At least in a tubular neighborhood of Γ
we know {Πt}t∈Γ is a smooth swept family. More
generally we can replace the orthogonal complement
by a smoothly varying family of complementary sub-
spaces. In §3, we consider the situation of a curve
Γ ⊂ R

3, with a smoothly varying family of comple-
mentary planes.

Skeletal Structures

We next recall the notion of a “skeletal structure”
(M,U) in R

n+1 introduced in [D1] (or see the less
technical discussion in [D3]). It consists of the skele-
tal setM which is a Whitney stratified set satisfying
certain special conditions. On M is the radial vec-
tor field U which is a multivalued vector field where
the number of values vary depending on the stra-
tum. Furthermore, M and U satisfy certain extra
conditions which always are satisfied for Blum me-
dial axes (see [D1, §1] for a complete discussion).

A Whitney stratified set M may be represented
as a union of disjoint smooth strata Mα of varying
dimensions satisying the “axiom of the frontier”(if
Mβ ∩M̄α 6= ∅, then Mβ ⊂ M̄α); and Whitney’s con-
ditions a) and b) (which involve limiting properties

of tangent planes and secant lines). Key properties
of Whitney statified sets are found in [M1] and [Gi],
and are summarized in [D1, §1]. For example, for re-
gions Ω with smooth generic boundariesB, the Blum
medial axis is a Whitney stratified set by Mather
[M2]). Its local structure has been determined by
Yomdin [Y], Mather [M2], and Giblin [Gb] for an
explicit geometric description for regions in R

3, and
it satisfies the other extra conditions, see e.g. [BN],
[P], and Chap. 2 by Giblin-Kimia in [PS].

We let Mreg denote the points in the top dimen-
sional strata (this is the dimension n ofM and these
points are the “smooth points”of M). Also, we let
Msing denote the union of the remaining strata, and
∂M denote the subset of Msing consisting of the
“edge points”of M at which M is locally an n mani-
fold with boundary, with the points being boundary
points. An important property of a skeletal structure
is that each local component of Mreg has a unique
limiting tangent space as we approach any point in
Msing from that component.

For example, for regions in R
3 with smooth

generic boundary, the types of points of M are
shown in figure 3.

a) edge b) Y-branching c) fin creation point d) "6-junction"

Fig. 3. Local generic structure for Blum Medial axes in R
3

and the associated Radial Vector Fields

Swept Skeletal Structures

Suppose that (M,U) is a skeletal structure with
associated boundary B which encloses the region Ω.
Suppose also that Ω is represented as a swept re-
gion via the smooth family {Πt}t∈Γ of (n− k + 1)–
dimensional affine subspaces.
Definition 1.5 We say that (M,U) is a swept
skeletal structure if for each x ∈M with say x ∈ Πt,
and for each value U(x) of U at x, U(x) ∈ Πt. We
then refer to the resulting associated boundary B as
a radial swept hypersurface.
Again by the parametrized transversality theorem
and the openness of transversality to closed Whit-
ney stratified sets, the set of t ∈ Γ such that Πt is
transverse to M (i.e. the strata of M) is open and
dense in Γ, with complement of measure zero. For
such t, Mt = M ∩ Πt is a Whitney stratified set of
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dimension n − k. In addition, if Ut denotes the re-
striction of U to Mt, then for an open dense subset
of t ∈ Γ, (Mt, Ut) is a skeletal structure with associ-
ated boundary Bt enclosing the region Ωt = Ω ∩ Πt

in Πt.

Contracted Skeletal Structures

A skeletal structure (M,U) in R
n+1 will have the

skeletal set of dimension n. There are situations
where due to symmetry (such as cylindrical symme-
try in R

3), the Blum medial axis will be a curve. For
regions in R

3 such as irregular tubes which are close
to having such a symmetry, there may be advantages
to representing them medially using a curve. We
allow such a situation by introducing a contracted
skeletal structure.
Definition 1.6 A contracted skeletal structure will
consist of a compact k–dimensional Whitney strati-
fied setM ⊂ R

n+1, an n–dimensional Whitney strat-
ified set M̃ (in some other manifold), a stratified map
p : M̃ →M , and a vector field U : M̃ → R

n+1 along
the map p so that there is an ε > 0

(i) the map Ψ : M̃ × R → R
n+1 defined by

Ψ(x, t) = p(x) + t · U(x), when restricted to
M̃ × (0, ε], is a homeomorphism onto its im-
age (and is a diffeomorphism restricted to the
closure of each stratum of M̃);

(ii) U(Ψ(x, t)) is transverse to Ψ(M̃ × {t}) at
smooth points and to all of the limiting tan-
gent planes at points coming from the singular
points of M ; and

(iii) Ψ(M̃ × (0, ε)) ∪M is a neighborhood of M .
For such contracted skeletal structures, Ψ(M̃ ×
(0, ε)) ∪ M is a “tubular neighborhood”of M . By
[D1, Thm 5.1], any skeletal structure (M,U) sat-
isfies definition 1.6. We can view the map Ψ as a
“radial flow”from M filing out the tubular neigh-
borhood, which is fibered by the level sets ψt(M̃),
where ψt(x) = Ψ(x, t).

Just as for a skeletal structures, for a contracted
skeletal structure (M, M̃, U), we can introduce the
“region”Ω = Ψ(M̃ × (0, 1])∪M , and its “associated
boundary”B = ψ1(M̃). In general, Ω need not be a
region, nor will B be its piecewise smooth boundary.
In the case of skeletal structures, Theorem 2.5 of [D1]
gives a criterion for the smoothness of B as a smooth
boundary of the region Ω. We provide a criteria for
this more general case in §3.
Example 1.7 ( Polar Swept Hypersurfaces)
The simplest example of a contracted skeletal struc-

ture consists of a k–dimensional submanifold M of
R

n+1 with a smooth family of swept complementary
(n + 1 − k)–dimensional affine subspaces {Πt}t∈M

defined via a vector bundle E, with M̃ = unit sphere
bundle in E, and U = r · U1, where U1 is the unit
radial vector field in Πt, and r is a positive function
on the unit sphere bundle in E.

For x ∈ M , and M̃(x) denoting the unit sphere

in M̃ over x, the radial vector field at all points of
Ψ(M̃(x)) lies in the image of E(x), namely, {Πt}.

Then, Bx = Ψ(M̃(x)), is given by the radial function

r for polar coordinates for the unit sphere M̃(x) ⊂ Πt.
We refer to the resulting associated boundary B as

a polar swept hypersurface. When M is the image
of a curve γ(t) in R

3, we obtain a generalized tube
about the curve γ(t), where the slices are affine rather
than normal slices, and the curve in each slice (Bγ(t))
varies as t varies (see figure 4).

Πt

γ(t)

Fig. 4. Polar swept (hyper)surface swept by a smooth family
of planes Πt along the curve γ(t).

2. Relative Shape Operators

Before defining relative shape operators for swept
skeletal structures, we first recall the definition of
radial shape operators associated to skeletal struc-
tures.

Radial Shape Operators and Principal Radial Cur-
vatures

Given a skeletal structure (M,U) in R
n+1, we con-

sider for a regular point x0 a choice of a smooth value
of U defined in a neighborhood of x0. We may rep-
resent U = r ·U1, for an associated unit vector field
U1. Then, the radial shape operator is defined by
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Srad(v) = −projU (
∂U1

∂v
)

for v ∈ Tx0M . Here projU denotes projection onto
Tx0M along U (which in general is not orthogonal
to Tx0M). Then, Srad : Tx0M → Tx0M is linear but
not necessarily symmetric. We call the eigenvalues
of Srad the principal radial curvatures at x0, and
denote them by κr i.

Given a basis {v1, . . . , vn} for Tx0M , then for each
i we may represent

∂U1

∂vi

= ai · U1 −
n

∑

j=1

sjivj . (1)

This equation can be written in vector form. We
let v denote the column vector with i–th entry vi,
Av with i–th entry ai,

∂U1

∂v
with i–th entry ∂U1

∂vi
.

Also, Sv is the matrix with ij–th entry sij and is a
matrix representation for Srad with respect to the
basis {v1, . . . , vn}. Then, (1) can be written in vector
form by

∂U1

∂v
= Av · U1 − ST

v
· v (2)

In this equation we interpret Av · U1 as the column
vector with i–th entry the vector ai · U1; while ST

v
·

v denotes the column matrix obtained by matrix
multiplication of the scalars in ST

v
(the transpose of

Sv) times the vectors in v.
Remark 2.1 We emphasize that because there are
two smooth values of U at smooth points, we obtain
two shape operators at each point. Moreover, near a
non–edge point x0 ∈ Msing, for each local smooth
component of Mreg for x0, each smooth value of U
will extend smoothly to x0. Thus, to each value of U
and each local component, such a shape operator will
be defined at x0. Hence, any statement involving the
shape operator will involve all of these for each point.

Relative Shape Operators

Now we consider the case of a swept skeletal struc-
ture structure (M,U) by a smooth family of (n+1−
k)–dimensional affine subspaces {Πt}t∈Γ with the
Πt transverse to M in a neighborhood of a smooth
point x0 ∈M . Then, if x0 ∈ Πt0 , for t in a neighbor-
hood of t0, Mt = M ∩ Πt, (Mt, Ut) defines a skele-
tal structure in Πt smooth in a neighborhood of x0.
Hence, for each smooth value of Ut locally near x0,
there is defined a radial shape operator Srad(Mt).

We now proceed to define a relative shape opera-
tor for the entire skeletal structure (M,U). We again
write U = r · U1 with U1 a unit vector field. The
relative shape operator will now measure how U1

changes relative to the family of affine subspaces Πt

as we move alongM in a direction tranverse toMt0 .
As Mt0 is smooth near x0 in M , we may choose a
complementary subspace Nx0 to Tx0Mt0 in Tx0M .
As Πt0 is transverse to M at x0, Nx0 is also a com-
plementary subspace to Πt0 in R

n+1. As Mt0 has
codimension k inM ,Nx0 has dimension k. Then, for
the smooth value of U , we define the relative shape
operator

Srel : Nx0 → Nx0

as follows:

Srel(v) = −projΠt0
(
∂U1

∂v
)

where projΠt0
denotes the projection onto Nx0

along Πt0 (recall x0 ∈ Πt0).
First, we claim

Lemma 2.2 Up to conjugacy, Srel is independent
of the choice of Nx0 .
Proof: Let N ′

x0
be another complementary sub-

space to Tx0Mt0 in Tx0M . Also, we let α denote the
restriction toN ′

x0
of the projection from R

n+1 toNx0

along Πt0 . Then, α : N ′
x0

≃ Nx0 . Given v′ ∈ N ′
x0

,
we let v = α(v′). Thus, v′ − v = w ∈ Tx0Mt0 . Since
U1 ∈ Πt0 for all x ∈Mt0 , if w ∈ Tx0Mt0

∂U1

∂w
∈ Πt0 .

Hence,
∂U1

∂v′
=

∂U1

∂v
mod Πt0

Hence, applying minus the projection projΠt0
onto

Nx0 along Πt0 , we obtain

−projΠt0
(
∂U1

∂v′
) = −projΠt0

(
∂U1

∂v
) (3)

If instead proj′Πt0
denotes projection ontoN ′

x0
along

Πt0 , then

α ◦ proj′Πt0
= projΠt0

Hence (3) becomes

α ◦ proj′Πt0
(
∂U1

∂v′
) = projΠt0

(
∂U1

∂v
)

With S′
rel denoting the relative shape operator com-

puted using N ′
x0

, we obtain

α ◦ S′
rel ◦ α

−1(v) = Srel(v)

for all v ∈ Nx0 , as claimed. 2

Hence, the eigenvalues of Srel are well-defined. We
denote them by κrel,j and call them the principal
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relative curvatures of the swept skeletal structure
representation.

Second, we may obtain a matrix representation for
Srel in an analogous fashion as for Srad. We choose
a basis {v1, . . . , vk} for Nx0 and for each i represent

∂U1

∂vi

= wi −
k

∑

j=1

sjivj (4)

where wi ∈ Πt0 . This equation can be written in
vector form analogous to (2). We let v denote the
column vector with i–th entry vi, w with i–th entry
wi,

∂U1

∂v
with i–th entry ∂U1

∂vi
. Also, Srel,v is the ma-

trix with ij–th entry sij and is a matrix representa-
tion for Srel with respect to the basis {v1, . . . , vk}.
Then, (1) can be written in vector form by

∂U1

∂v
= w − ST

rel,v · v (5)

In this equation, ST
rel,v ·v denotes the column matrix

obtained by matrix multiplication of the scalars in
ST

rel,v (the transpose of Srel,v) times the vectors in
v.
Example 2.3 (Swept Skeletal Structures in R

3)
We next consider the special case of a swept skeletal
structure (M,U) in R

3, given by a smooth family of
planes {Πt}t∈Γ with Γ a curve. Then, Nx0 is a line,
and for nonzero v ∈ Nx0 , (5) becomes

∂U1

∂v
= w − κrel · v with w ∈ Πt0 (6)

The relative shape operator is just multiplication by
κrel, and κrel is the principal relative curvature.

Computing Relative Principal Curvatures without
Normalizing U

It is possible to compute the radial shape and edge
operators, without having to first normalize U to
the unit vector field U1 (see e.g. [PS, Chap. 3]). For
example,

−projU (
∂U

∂v
) = r · Srad(v)

Thus, r ·Srad can be computed without normalizing.
It has eigenvalues {rκr,i}, and the conditions such as
smoothness of the boundary are expressed in terms
of the rκr,i. In an exactly analogous fashion, we can
compute the relative shape operator

−projΠt0
(
∂U

∂v
) = r · Srel(v)

We shall see that conditions involving r ·Srad and its
eigenvalues {rκr,i} can then be expressed in terms
of r · Srel and its eigenvalues {rκrel,i}.
Remark 2.4 If the singular point x ∈Msing is not
an edge point, then for each local smooth component
Mi in a neighborhood of x, and smooth value of U
on Mi, we can analogously define a relative shape
operator at x.

Radial Shape Operator from Relative Shape Operator

Next, we show how to determine for a swept skele-
tal structure (M,U), the matrix representation for
the radial shape operator in terms of the radial shape
operators for the slices and the relative shape oper-
ator.

In addition to the basis v for Nx0 , we also choose
a basis v′ = {v′1, . . . , v

′
n−k} for Tx0Mt0 . Together

v′ and v give us a basis v′′ for Tx0M . Then, we
may compute the matrix representation of Srad for
(M,U) in terms of Srad,v′(Mt0) and Srel,v.
Proposition 2.5 The matrix representation of
Srad with respect to the basis v′′ is given by

Srad,v′′ =





Srad,v′(Mt0) ∗

0 Srel,v



 (7)

Proof: Since U1 ∈ Πt0 for all x ∈ Mt0 , if w ∈
Tx0Mt0 , then ∂U1

∂w
∈ Πt0 . Furthermore, if we apply

−projUt0
, then we obtain Srad(Mt0)(w). Hence the

first n−k columns of Srad,v′′ have the desired form.
Second, if w ∈ Nx0 , then

−projU (
∂U1

∂w
) = Srel(w) + w′ (8)

where w′ ∈ Tx0Mt0 . Thus, writing the RHS of (8) in
terms of the basis v′′ implies that the last k columns
of Srad,v′′ have the form given by the RHS of (7).
2

We immediately deduce several corollaries from
the block upper triangular form of Srad,v′′ in (7).
Corollary 2.6 For a swept skeletal structure, the
principal radial curvatures for the smooth value U at
x0 consists of the union of the principal radial cur-
vatures for (Mt0 , Ut0)at x0 and the principal relative
curvatures at x0, counting multiplicities:

{κrad,i} = {κrad,j(Mt0)} ∪ {κrel,ℓ} (9)

Second, we deduce the form of the determinants of
Srad and I − tr · Srad (for skeletal integral formulas
given in §4).
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Corollary 2.7 For a swept skeletal structure, there
are the following formulas for determinants at x0 ∈
Πt0 :

det(Srad) = det(Srad(Mt0)) · det(Srel) (10)

and

det(I − tr · Srad) = det(I − tr · Srad(Mt0))

· det(I − tr · Srel) (11)

Relative Principal Curvature and Principal Edge
Curvature

If (M,U) is a skeletal structure, then for points of
∂M , U is tangent toM , so the radial shape operator
is not defined. In its place is the Edge– shape oper-
ator. Given a point x0 ∈ ∂M and a smooth value U
at x0, we let n be the unit normal vector field to M
in a neighborhood of x0. Then, we define the Edge–
shape operator by

SE(v) = −proj′(
∂U1

∂v
)

for v ∈ Tx0M . Here proj′ denotes projection onto
Tx0∂M⊕ < n > along U1.

Given a basis {v1, . . . , vn−1} of Tx0∂M , we also
choose a vector vn in the edge coordinate system
at x0 so that {v1, . . . , vn−1, vn} is a basis Tx0M in
the edge coordinate system and so that vn maps
under the edge parametrization map to c · U1(x0)
where c ≥ 0 (the specific value of c is immate-
rial). Then, we can compute a matrix representa-
tion SE v for SE in a manner analogous to (2) us-
ing the bases {v1, . . . , vn−1, vn} in the domain and
{v1, . . . , vn−1,n} in the range, where n is a unit nor-
mal vector field to M on a neighborhood W of x0.

The principal edge curvatures of M at x0 are
the generalized eigenvalues of (SE v, In−1,1), where
In−1,1 denotes the n × n–diagonal matrix with 1’s
in the first n−1 diagonal positions and 0 otherwise.
(recall the generalized eigenvalues of an ordered
pair (A,B) of n × n–matrices consists of λ such
that A − λ · B is singular). The generalized eigen-
values of (SE v, In−1,1) are called the principal edge
curvatures of M and we denote them by {κE i}
(note the number of generalized eigenvalues is only
n− 1 = rk(In−1,1)).

In the case of a skeletal structure (M,U) in R
3

with associated boundary B and defining region Ω,
then at a point x0 ∈ ∂M , there is a single principal
edge curvature, which we denote by κE . Then in the

case (M,U) locally has a swept representation, we
can compute κE from the principal relative curva-
ture.
Proposition 2.8 Suppose the skeletal structure
(M,U) in R

3 locally has in a neighborhood of x0 ∈
∂M a swept representation via a family of planes
{Πt}t∈∂M . Then,

κE = κrel (12)

We give the proof of this proposition in §5. We
also give a simplified method to compute κrel along
edges in Corollary 3.5.

Computing the Shape Operator for Polar Swept Hy-
persurfaces

Suppose now that (M, M̃, U) is a swept con-
tracted skeletal structure as in Example 1.7. Then,
we let B(s) = ψs(M̃) denote a level set of the radial
flow. We may define on B(s) the vector field U which
at Ψ(x, s) is U(s)(x) for x ∈ M̃ . By assumption, for
s < ε, this vector field does not lie in any tangent
space at a smooth point, nor limiting tangent space
at any of the points coming from singular points of
M . We can define the radial shape operator Srad s

for (B(s), U(s)). Because the (n+ 1− k)–subspaces
Πt are transverse to the strata of B(s) and the lim-
iting tangent spaces at singular points, we can view
B(s) as a swept skeletal structure and give a calcu-
lation analogous to Proposition 2.5. This requires
computing the radial shape operator for each slice
B(s)t of B(s) by Πt and the relative shape operator
for this swept skeletal structure. However, we want
to express both of these in terms of (M, M̃, U).

To define the relative shape operator for (M, M̃, U),
suppose x̃0 ∈ M̃ with p(x̃0) = x0 and x0 ∈ Πt0 .
Then, for v ∈ Tx0M , with a lift ṽ ∈ Tx̃0M̃ we define
Srel : Tx0M → Tx0M by

Srel,(x̃0)(v) = −projΠt0
((
∂U1

∂ṽ
) (13)

As Srel,(x̃0) is an operator on Tx0M , the “rela-

tive feature”is the dependence on x̃0 ∈ M̃(x0) =
p−1(x0). As for the relative shape operator for swept
skeletal structures, the relative shape operator for
(M, M̃, U) is well–defined.
Lemma 2.9 Srel is well–defined.
Proof: It is only necessary to show the definition
is independent of the lift ṽ. This follows because
on M̃(x0) = p−1(x0), U1 maps to Πt0 , so if w ∈

T̃x0M(x0), then ∂U1

∂w̃
∈ Πt0 . 2
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We then choose v = {v1, . . . , v′k} for Tx̃0M̃ which
map under dp(x̃) to a basis for Tx0M . We also choose

a basis v′ = {v′1, . . . , v
′
n−k} for Tx0M̃t0 . Together v′

and v give us a basis v′′ for Tx̃0M̃ . Under dψs (x̃0), v
′′

maps to a basis v′′′ for Ty0B(s) where ψs(x̃0) = y0.
Proposition 2.10 The matrix representation of
Srad for B(s) at the point y0 with respect to the basis
v′′′ is given by

Srad,s,v′′′ = (14)




−
1

sr
· In−k ∗

0 Srel,(x̃0)v · (I − srSrel,(x̃0) (x̃0)v)−1





We obtain the following corollary for polar swept
surfaces, which are just generalized tubes along a
curve.
Corollary 2.11 Suppose (M, M̃, U) defines a polar
swept surface in R

3 with notation as above. Then, the
matrix representation of Srad for B(s) at the point
y0 with respect to the basis v′′′ is given by

Srad,s,v′′′ =







−
1

sr
∗

0
κrel

(1 − srκrel)






(15)

where κrel is evaluated at the point x̃0 = (t, θ) cor-
responding to y0 under the map ψs.
Example 2.12 Weconsider the special case of a po-
lar swept surface defined for γ(t) a unit speed curve,
with the planes Πt normal to γ(t). By Corollary 2.11,
to explicitly give the matrix representation for Srad

for B(s) in this case, it remains only to compute the
term ∗ in the upper high hand corner. We represent
U1 = cos(θ)e1 + sin(θ)e2 and denote the orthogonal
complement Uθ = − sin(θ)e1 + cos(θ)e2. Then, we
may write

∂U1

∂t
= β1U1 + β2Uθ − κrelT.

Then, a straightforward calculation shows the upper
right hand entry ∗ is given by

−
β2

sr(1 − srκrel)

In the special case where e1 = N and e2 = B,
a direct calculation with the Frenet formulas shows
β1 = 0, β2 = τ (the torsion of γ(t)) and

κrel = κ cos θ (16)

(with κ denoting the usual differential geometric cur-
vature). Then, the upper right hand entry ∗ is given
by

−
τ

sr(1 − srκ cos θ)

Remark For a special class of tubes considered by
Mike Kerchove (unpublished) where internal spheres
on the central curve are tangent to the boundary along
a circle, the circles lie in a family of planes along the
curve of circle centers. This defines a special type of
swept polar surface, and the above formulas recover
his computations of the radial shape operator but in
terms of the swept representation.

3. Relative Principal Curvature Conditions
Implying the Smoothness of the Boundary

In this section we derive conditions that a surface
in R

3 locally formed as a swept surface from a family
of smooth planar curves is itself smooth. Figure 5
illustrates how this may fail.

γ(t)

tB

Fig. 5. Failure of smoothness for a surface swept by a smooth
family of planar curves Bt along the smooth space curve
γ(t). In this case Bt is a family of straight lines.

We consider the case that (M,U) is locally a
swept skeletal structure by a smooth family of planes
{Πt} for which the skeletal structures (Mt, Ut) have
smooth associated boundary curvesBt in Πt (see fig-
ure 6). We allow points of the open set W where we
have the swept representation to be smooth points,
edge points, or general singular points; however, we
suppose that the Πt are transverse to the curves of
singular points in M such as Y -junction curves and
edge curves. Also, at codimension 2 singular points
such as fin points and 6–junction points, the Πt are
also transverse to the limiting tangent planes of the
regular points and the limiting tangent lines from
the Y – junction curves.

Two simple examples where such swept represen-
tations are relevant are along edge curves of medial
axes, as in Example 3.6, or for generalized offset sur-
faces, Example 3.8. Then, we give conditions which
ensure that the associated boundary B of (M,U)
is smooth by using the conditions from [D1] (alter-
nately see [D3] or [PS, Chap. 3]). The three condi-
tions which ensure smoothness are stated in terms of
the principal radial curvatures and the edge curva-
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tures, and a compatibility condition [D1, Theorem
2.5].

Modeling with Swept Surfaces: Conditions Implying
Smoothness

We suppose that for each t the swept skeletal
structures (Mt, Ut) in Πt satisfy the three conditions
and that the associated boundary curves are smooth
(see e.g. Figures 6 and 7) . This assumption implies
that the principal radial curvature κrt for each curve
Bt satisfies the following condition.
(Radial Curvature Condition ) For all points of each
Mt not on ∂Mt (which are the end points of Mt)

r <
1

κrt

if κrt > 0

Then, the condition for smoothness is the following.
Theorem 3.1 Let (M,U) denote the locally swept
skeletal structure on an open set W of M , with the
associated (Mt, Ut) having smooth associated bound-
ary curves Bt satisfying the radial curvature condi-
tions. If at all points of W , (M,U) satisfies the rel-
ative curvature condition :

r <
1

κrel

if κrel > 0

then the associated boundary B of (M,U) will be
smooth at all points of B corresponding to the points
of W .
Proof: By our assumption on κrt and Corollary
2.7 and Proposition 2.8, we have

(i) (Radial Curvature Condition ) For all points
of each Mt off ∂Mt

r < min{
1

κ̄
} for κ̄ from among those

κrt or κrel which are > 0

(ii) (Edge Condition ) For all points of ∂Mt (clo-
sure of ∂Mt)

r <
1

κE

(=
1

κrel

) if κrel > 0

These conditions imply that no singularities are
formed by the radial flow from the smooth points,
and new singularities are not created for the flow
from the singular points of M . It remains to see
that at images of singular points and edge points
we have well–defined tangent planes. This is usually
checked using the compatibility condition in Theo-
rem 2.5 of [D1]. However, by assumption, the curves
Bt are smooth at branch points or end points of

Mt. Hence, they are smooth in the slices by the Πt

which are transverse to the strata of M . Thus, from
each direction, the tangent plane at a point of B is
formed from the tangent line corresponding to the
curve coming from the curve in M and the tangent
line for the transverse curve Bt. Hence, the tangent
plane is unique. This completes the proof. 2

We also give an analogue of Theorem 3.1 for polar
swept hypersurfaces.
Corollary 3.2 Let (M, M̃, U) define a polar swept
hypersurface in R

n+1 with dimM = k and with no-
tation as above. Suppose for x0 ∈M and x0 ∈ Πt0 ,

r(x̃0) < min{
1

κrel,i(x̃0)
} for κrel,i(x̃0) > 0 (17)

for all x̃0 ∈ M̃t0 . Then, the level surfaces of the flow
B(s) will be smooth at points of ψs(M̃t0) for all 0 <
s ≤ 1,
Proof: We already know the result holds by as-
sumption for s < ε. Choose one such s. Because we
can view the radial flow from M̃ at time s + s′ as
the radial flow from B(s) at time s′, we can apply
the criteria for smoothness of associated boundaries
given in [D1, Theorem 2.5] to obtain that the radial
flow from y0 ∈ B(s) will be smooth for 0 < s′ ≤ 1−s
provided

r − sr < min{
1

κr,i

} for κr,i > 0 (18)

where {κr,i} are the principal radial curvatures
for (B(s), U(s)) at y0. By Proposition 2.10, these
are − 1

sr
, with multiplicity n − k, and κrel,i · (1 −

srκrel,i)
−1 where the κrel,i are the principal relative

curvatures of Srel,(x̃0). As − 1
sr
< 0, (18) reduces to

r − sr <

(

κrel,i

(1 − srκrel,i)

)−1

for
κrel,i

(1 − srκrel,i)
> 0(19)

However, (17) implies that κrel,i has the same sign
as κrel,i · (1 − srκrel,i)

−1. Thus, (19) need only be
verified for κrel,i > 0. Then, a direct calculation
easily shows that (17) with κrel,i > 0 implies (19),
as required. 2

Remark 3.3 In the case of polar swept surfaces, the
condition (17) becomes

r(θ, t) <
1

κrel(θ, t)
when κrel(θ, t) > 0 (20)

for all (θ, t). This is the exact analogue of Theorem
3.1.
Now we explain how to explicitly compute the prin-
cipal relative curvature for swept surfaces in R

3.
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Computing the Principal Relative Curvature for
Swept Surfaces in R

3

To actually compute the relative principal cur-
vature, we give a method in terms of the swept
parametrization for (M,U). We suppose that along
a curve γ(t) in M , we have chosen an orthonor-
mal frame {e1, e2, e3} so that the unit radial vector
field U1 = e1 and with {e1, e2} spanning the plane
Πt through γ(t). Then, we represent the curves Bt

parametrized by

X(t, θ) = γ(t) + c1(t, θ)e1 + c2(t, θ)e2 (21)

and

U(t, θ) = α1(t, θ)e1 + α2(t, θ)e2 (22)

Here, for fixed t, θ is the parameter for curves in
the plane Πt. Next, as usual, the derivatives of the
frame field along γ(t) may be written

∂ei

∂t
= ωi1e1 + ωi2e2 + ωi3e3 for i = 1 . . . 3 (23)

with (ωij) skew symmetric.
Second, we may also write

γ′(t) = γ1e1 + γ2e2 + γ3e3 (24)

Since γ′(t) is complementary to Πt, γ3 6= 0.
Then, the relative principal curvature is given by

the following.
Proposition 3.4 In the preceding situation, the rel-
ative principal curvature may be computed by

κrel = −
1

r
·

α1ω13 + α2ω23

γ3 + c1ω13 + c2ω23
(25)

We note several consequences of the proposition.
First, suppose that γ(t) is an edge curve and

X(t, 0) = γ(t) so X parametrizes a neighborhood
of the edge of M using edge coordinates, and
{e1, e2, e3} is an orthonormal frame along γ(t) as
above.
Corollary 3.5 Along an edge curve γ(t) of M ,

κE = κrel = −
ω13

γ3
(26)

Proof: As X(t, 0) = γ(t), (21) implies c1(t, 0) =
c2(t, 0) = 0. Also, as U1 = e1 on γ(t), (22) implies
α2(t, 0) = 0 and α1(t, 0) = r. Then, the RHS of (25)
becomes the RHS of (26). Hence, the result follows
from Proposition 3.4. 2

Example 3.6 (Modeling crest regions of boundaries)
A crest region of a boundary surface corresponds to

γ(t)

M

Bt Πt

Fig. 6. Swept model of a crest region using a smooth family
of ellipses parametrized by the edge curve of the medial axis.

an edge of the medial axis (see e.g. [BGT]). If we
would like to model the crest region using a quadratic
approximation along the crest curve, one way we
can proceed is via a swept surface representation.
We suppose that X(t, θ) gives edge coordinates for a
neighborhood of an edge point, with X(t, 0) = γ(t)
parametrizing the edge. We let {Πt} be a smooth
family of planes transverse to γ(t), with an orthonor-
mal frame{e1, e2} along γ(t) for each Πt, such that
U1 = e1 along γ(t). We consider a family of curves
Bt ⊂ Πt, whose medial axes are line segments which
end at γ(t), and which together form a neighborhood
of the medial axis of the three dimensional region.
Then, it will follow from Proposition 2.8 that the
principal edge curvature κE, which controls smooth-
ness of the associated boundary at the crest points,
is given by the principal relative curvature κrel. In
turn, it is computed without specifying the curves
Bt. Thus, the edge condition of Theorem 2.5 of [D1]
only depends on the values of r for the Bt along γ(t).

Modeling with families of ellipses
One example is where the Bt is a portion of an

ellipse x2

b2
+ y2

a2 = 1 with a < b. Then, the me-
dial axis of the ellipse is the segment on the x-axis
[

− c2

b
, c2

b

]

, where b2 = a2 + c2. If we use the end

point ( c2

b
, 0), then for the parametrization (x, y) =

(b cos(θ), a sin(θ)), the point on the medial axis is

( c2

b
cos(θ), 0), and U = (a2

b
cos(θ), a sin(θ)) (note

that here θ serves as an edge coordinate for the me-
dial axis). Hence, r = a

b
(a2 cos2(θ) + b2 sin2(θ))

1
2 ,

and at the edge point r = a2

b
. Thus, along the crest

curve it is only necessary to ensure that a2

b
< 1

κrel
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when κrel > 0. As a and b are parameters, they can
be adjusted to ensure the condition holds.

This will ensure in a small neighborhood of the
crest curve that the associated boundary surface is
smooth. To ensure that singularities do not develop
on a larger region about the crest curve, we use in-
stead the general form for r and verify instead the
inequality given by Proposition 3.4 with (c1, c2) =

(b cos(θ) − c2

b
, a sin(θ)).

Πt

Ω t

Πt

Ω t

Fig. 7. Modeling a region of a surface corresponding to sin-
gular points of the medial axis such as fin points or along
Y –junction curves by a swept skeletal structure with a fam-
ily of smooth curves.

Remark 3.7 There are other possibilities for mod-
eling crest regions of surfaces with other families of
curves depending on parameters such as parabolas.
Such modeling has been applied in [HPD]. Also, in
the case of medial axes, we can likewise use swept
representations for modeling along singular sets of
the medial axis such as the Y –junction curves or near
fin points or 6– junction points as in Fig. 7. In [TG],
such modeling has been carried out.
Example 3.8 (Modeling with generalized offset surfaces)
A special case of a skeletal structure is the case of
a smooth surface M with a radial vector field U .
Then, the resulting associated boundary surface B
can be viewed as a generalized offset surface. Then,
we can view modeling such an offset surface as being
obtained from a swept family of generalized offset
curves. The condition that the individual generalized
offset curves are smooth is given by the radial curva-
ture condition in Theorem 2.5 of [D1]. Even though
the offset curves are smooth it is still possible for
the generalized offset surface to have singularities.
The condition that the resulting swept generalized
offset surface is smooth is given by the same radial
curvature condition which reduces to a condition on
the principal relative curvature given by Theorem
3.1. Preliminary results obtained for modeling with
generalized offset surfaces are given in [C].

4. Integrals over Swept Regions via Skeletal
Integrals

In this section we consider volumetric properties
of swept regions. Using the integral formulas from
[D4] combined with the results of the earlier sections,
we express integrals on the swept region Ω defined
by a swept skeletal structure (Mt, Ut) as iterated
integrals of skeletal integrals on the slices Ωt, then
integrated over the oriented parameter manifold Γ.
Specifically we use the notation of §1, so {Πt : t ∈ Γ}
is a smooth family of (n− k+1)–dimensional affine
spaces over a submanifold Γ ⊂ R

n+1. We suppose
that (M,U) is a swept skeletal structure via the fam-
ily {Πt}. We can define a projection π : M → Γ by
x 7→ t where x ∈ Πt. For simplicity we assume that
both E and Γ are orientable which gives the usual
orientation on R

n+1 via the diffeomorphism γ.
There is one additional condition which we re-

quire to perform volumetric computations. We as-
sume this condition holds throughout this section.
4.1 (Volumetric Condition for Swept Regions)
For a swept skeletal structure (Mt, Ut) for the family
of subspaces {Πt : t ∈ Γ}, defining the region Ω, we
require:
{x ∈M : M is not transverse to Πt at x ∈M ∩ Πt}

has measure zero in M .
By A ⊂M having measure zero, we mean A∩Mreg

has measure zero in Mreg.
We begin by giving a “skeletal integral represen-

tation”for the integral over Ω of a Borel integrable
function g : Ω → R. We let g1(x, s) = g(x+ sU(x))
for x ∈ M and U(x) a value of U at x. Then, we
define

g̃(x) =

1
∫

0

g1(x, s) · det(I − srSrel)

· det(I − srSrad(Mt)) ds. (27)

Theorem 4.2 Let (M,U) be a swept skeletal struc-
ture via the smooth family {Πt : t ∈ Γ} which defines
the region Ω with smooth boundary B. For a Borel
integrable function g : Ω → R, we may express the
integral
∫

Ω

g dV =

∫

M̃

r · g̃(x) dM. (28)

We recall that the integral on the RHS is over M̃ ,
which means that we integrate over both sides of M
(see [D4]).
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The proof of Theorem 4.2 follows by applying
Theorem 6 of [D4] while using (11) of Corollary 2.7.

We will further represent the integral on the RHS
of (28) as iterated integrals first over Mt, and then
integrated over Γ. For example, in the special case
that the family of subspaces {Πt} are parallel and Γ
is a linear space orthogonal to the Πt, then we are
reduced to Fubini’s theorem, where the integral over
each slice Ωt is given as a skeletal integral. However,
in general there are three varying features that each
contribute to a modfication: i) the rotational move-
ment of the subspaces Πt as we vary t ∈ Γ, ii) the
variation of TxM with respect to Πt and Tπ(x)Γ; and
iii) the position of U relative to the skeletal sets Mt

and M . All of these variations except the first de-
pend on the point x ∈Mt. The integral formula we
shall give will take into account all three of these
variations. For example, even if the subspaces Πt are
parallel, there are still the other two variations to
take into account.

Invariants Associated to Swept Skeletal Structures

If Πt is transverse to M at a point x, and U is
a smooth value at x, then we define an invariant ν
as follows. Let n be a unit normal vector to M and
on the same side of M as the value of U ; and let
n1 be a unit normal vector to Mt in Πt and on the
same side as U . Let {v′1, . . . , v

′
n−k} be an orthonor-

mal basis for TxMt such that {n1, v
′
1, . . . , v

′
n−k} has

positive orientation in Πt. Let Nx denote the or-
thogonal complement to TxMt in TxM . For an or-
thonormal basis {v1, . . . , vk} for Tπ(x)Γ, we choose
{ṽ1, . . . , ṽk} in Nx which map to {v1, . . . , vk} under
dπx. These are unique by dimension considerations
and the transversality of Π to M . Reordering the vi

if necessary, we suppose {n, v′1, . . . , v
′
n−k, ṽ1, . . . , ṽk}

has positive orientation for dV , the volume form on
M corresponding to n. Then we let

ν(x) = dV (v′1, . . . , v
′
n−k, ṽ1, . . . , ṽk)

= det(n, v′1, . . . , v
′
n−k, ṽ1, . . . , ṽk) (29)

This is independent of the choice of the orthonor-
mal bases having positive orientations. It can also
be viewed as the determinant of the matrix of π|Nx

with respect to orthonormal bases {v′′1 , . . . , v
′′
k} for

Nx and {v1, . . . , vk} for TtΓ (with the correct ori-
entation). Thus, it measures the relative position of
Nx versus Tπ(x)Γ, which deals with ii) above.

We define a second invariant at such points

ρ̃(x) =
ρ

ρ1
. (30)

Here, as in [D4], for a skeletal structure (M,U), ρ =
U1 ·n, where n is the unit normal toM which points
on the same side of M as U1. Similarly we define ρ1

for Mt, using instead n1, the unit normal vector to
TxMt in Πt. Then, ρ̃(x) measures the variation iii)
above. We give a bound for ρ̃ as a result of the next
lemma.
Lemma 4.3 Suppose M is a hyperplane in R

n+1.
Let Π be an (n − k + 1)–subspace transverse to M
and let M ′ = M ∩Π. Let n be the unit normal vector
to M , and n1 the unit normal vector to M ′ in Π. If
U1 ∈ Π is a unit vector then,

U1 · n ≤ U1 · n1

Proof: We may write n1 = an + w, where w ∈
M . Since both n1 and n are orthogonal to M ′, so is
w. As n1 is a unit vector, |a| ≤ 1. As U1 ∈ Π, we may
also write U1 = cn1 + v with v ∈ M ′. Then, on the
one hand, from the previous representation for U1,

U1 · n1 = c

Second, first using the representation for U1 and
then that for n1

U1 · n = cn1 · n = ca.

Together these yield the result. 2

Remark 4.4 If we apply Lemma 4.3 to TxM and
M ′ = TxMt, we obtain ρ ≤ ρ1, which implies the
bound 0 ≤ ρ̃(x) ≤ 1. We also note that if Πt ⊥M at
all points of M and for all t, then n = n1, so ρ = ρ1

and ρ̃ ≡ 1.
Also, in the special case that Γ is the smooth part

of M , then ν ≡ 1.

Expansion as an Iterated Integral

Then, we can expand the integral on the RHS of
(28) as an iterated integral of a skeletal integral over
Mt, and then integrating over t ∈ Γ. By our earlier
discussion, there is an open dense subset Γ0 ⊂ Γ
whose complement has measure zero, so that Πt is
tranverse toMt and Bt, and Ωt = Ω∩Πt is a smooth
manifold with boundary Bt. We let Ω0 = ∪t∈Γ0Ωt,
and M0 = ∪t∈Γ0Mt. Both are open dense subsets
whose complements in their respective spaces have
measure zero. Then, the relative shape operator is
defined at all points of M0 and integrals over Ω are
the same as integrals over Ω0.

This time we define for x ∈ Ω0 and g1(x, s) =
g(x+ sU(x)),
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ḡ(x) =

1
∫

0

g1 · det(I − srSrel)

· det(I − srSrad(Mt)) ds. (31)

Then, ḡ is Borel measurable on a Borel set Ω0

whose complement has measure zero. Thus, its in-
tegral over Ω is defined.
Theorem 4.5 (Iterated Skeletal Integrals)
Let (M,U) be a swept skeletal structure via the
smooth family {Πt : t ∈ Γ} which defines the region
Ω with smooth boundary B. For Borel integrable
function g : Ω → R, we may express the integral as
an iterated integral
∫

Ω

g dV =

∫

Γ

∫

M̃t

ḡ(x) · r dM̄t dVΓ. (32)

Here dM̄t is a relative medial measure

dM̄t = ν · ρ̃ dMt = ν · ρ dAt

where dMt = ρ1 · dAt is the medial measure on Mt,
with dAt the Riemannian volume measure on Mt.

The proof of Theorem 4.5 will be given in §7. We
next derive several consequences of this theorem.

We may use (32) and Theorem 6 of [D4] (applied
to Mt) to rewrite the integral over Ω as an iterated
integral over Ωt and then over Γ.
Corollary 4.6 In the preceding situation of Theo-
rem 4.5, the integral of g over Ω may be expressed as
an iterated integral over the regions Ωt.
∫

Ω

g dV =

∫

Γ

∫

Ωt

g(x) · ν · ρ̃

·det(I − srSrel) dVt dVΓ. (33)

Remark 4.7 In the case that Ω ⊂ R
3, in the preced-

ing integrals Srad(Mt) and Srel are multiplication by
the scalars κr t, resp. κrel, and the determinants in
(31) are just the factors (1−srκr t), resp. (1−srκrel).
As a consequence of (33), we see that the (n + 1)–
dimensional volume of Ω (which is given by the in-
tegral of g ≡ 1 over Ω) is not obtained by integrat-
ing the (n−k+1)–dimensional volume of Ωt over Γ
with an appropriate integrating factor; but instead,
by the integral of ν · ρ̃ · det(I − srSrel) over Ωt, and
then integrated over Γ. For example, for a swept re-
gion Ω ⊂ R

3

Corollary 4.8 For a swept region Ω ⊂ R
3 along a

curve γ(t),

vol(Ω) =

∫

γ

∫

Ωt

ν · ρ̃ · (1 − srκrel) dAds. (34)

In the case that we want to integrate g over a
subregion ∆ ⊂ Ω, we may apply the Crofton-type
formula from [D4] to express

∫

∆ g as an iterated in-
tegral. Such a formula computes integrals over the
region ∆ by first integrating over the intersection
of the region with radial lines and then integrating
the resulting function over the skeletal set M which
parametrizes such lines.

We let

ḡ∆(x) =

1
∫

0

χ∆ · g1 · det(I − srSrel)

· det(I − srSrad(Mt)) ds. (35)

where χ∆ is the characteristic function of ∆.
Theorem 4.9 (Iterated Skeletal Crofton-Type Formula)
Suppose (M,U) is a swept skeletal structure which
defines a region Ω. Let ∆ ⊂ Ω be Borel measurable
and let g : ∆ → R be Borel measurable and inte-
grable. Then, ḡ is defined for almost all U(x); it is
integrable on M̃ ; and

∫

∆

g dV =

∫

Γ

∫

M̃t

r · ḡ∆(x) dM̄t dVΓ. (36)

Note that g̃Γ will vanish for all (x, U(x)) for which
the radial line {x+tU(x) : 0 ≤ t ≤ 1} only intersects
Γ in a set of measure 0.

Next we expand the integral in (32) in terms of
moment integrals on Γ of radial moments of g.

Expansion by Moment Integrals

As in [D4], we can expand the determinants in
the integrals in Theorems 4.5 and 4.9 and express
these integrals in terms of moment integrals. For
example, in [TG] and [T], moment integrals are used
to compare shape fit for matching.

At a point x ∈ M where Πt is transverse to M ,
we have the relative shape operator Srel defined
with principal relative curvatures {κrel,i}. We let
σrel,j denote the j–th elementary symmetric func-
tion in the κrel,i. (so e.g. σrel,1 = tr (Srel), σrel,k =
det(Srel), etc). These invariants are measures of the
variation in i) above.

By our earlier discussion, the relative shape op-
erator is defined at all points of open dense sub-
set M0 ⊂ M , whose complement has measure zero.
Hence, the σrel,j are smooth on M0, so Borel mea-
surable on M .
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Now, we may then state a formula for the integral
of g : Ω → R over Ω. We define for x ∈ M0 with
x ∈ Πt and non-negative integer j, the j–th radial
moment of g for the slice Mt

mj(g)(x) =

1
∫

0

g1(x, s) · s
j

· det(I − srSrad(Mt)) ds. (37)

where g1(x, s) = g(x+ sU(x)). In the special case
of j = 0, we obtain a special type of weighted average
along a radial line

m0(g)(x) = g̃(x) =
1

∫

0

g1(x, s) · det(I − srSrad(Mt)) ds. (38)

Next, we define a relative skeletal moment integral
over Mt.

Irel,j+1(h)(x) =

∫

M̃t

h(x) · rj+1 · σrel,j dM̄t. (39)

Then, we finally can give a skeletal integral repre-
sentation for the integral of g over Ω
Theorem 4.10 Let (M,U) be a swept skeletal
structure via the smooth family {Πt : t ∈ Γ} which
defines the region Ω with smooth boundary B. For
Borel integrable function g : Ω → R,we may express
the integral

∫

Ω

g dV =

k
∑

j=0

(−1)j

∫

Γ

Irel,j+1(mj(g)) dVΓ. (40)

As a corollary, we consider the case of a swept
skeletal structure (M,U) in R

3 via the smooth fam-
ily {Πt} on a curve parametrized by γ(t), which de-
fines a region Ω ⊂ R

3 with smooth boundary B.
Then, the relative shape operator is just multipli-
cation by the principal relative curvature κrel. We
obtain
Corollary 4.11 Let (M,U) be a swept skeletal
structure in R

3 via the smooth family of planes {Πt}
on a curve parametrized by γ(t), which defines a
region Ω ⊂ R

3 with smooth boundary B. For Borel
integrable function g : Ω → R, we may express the
integral
∫

Ω

g dV =

∫

γ

(Irel,1(m0(g)) − Irel,2(m1(g))) ds(41)

Integrals over Regions Bounded by Polar Swept Hy-
persurfaces

Finally, we give alternate forms of these theorems
for the case of a region Ω bounded by a polar swept
hypersurface B defined via the smooth family of n−
k + 1–dimensional affine planes {Πx} parametrized
by x ∈ M . The polar swept structure is defined by
a map ψ : M ×R

n−k+1 → R
n+1, where for each x ∈

M , ψx = ψ(x, ·) maps {x} × R
n−k+1 isometrically

to Πx. Via this identification, locally the unit sphere
bundle M̃ ≃ M × Sn−k, and the unit radial vector
field U1 : M̃ → R

n+1 maps to the standard unit
radial vector field at the origin of Πx.

In this case, we only use a variant of the invari-
ant ν. We let {v′1, . . . , v

′
n−k+1} be an orthonormal

basis for Πx, and {v1, . . . , vk}, an orthonormal ba-
sis for TxM so that {v′1, . . . , v

′
n−k+1, v1, . . . , vk} has

positive orientation for R
n+1. Then, for polar swept

surfaces we let

ν(x) = dV (v′1, . . . , v
′
n−k+1, ṽ1, . . . , ṽk)

= det(v′1, . . . , v
′
n−k+1, ṽ1, . . . , ṽk) (42)

As for ν defined for swept skeletal structures by
(29), (42) is independent of the choices of orthonor-
mal bases.
Theorem 4.12 Let Ω be a swept region bounded by
a polar swept hypersurface B via the smooth family
{Πx : x ∈M}. For Borel integrable function g : Ω →
R, we let g1(s, x, θ) = g(ψ(x, θ) + sU(x, θ)). Then,
we may express the integral as an iterated integral

∫

Ω

g dV =

∫

M

∫

Sn−k

1
∫

0

(43)

g1(s, x, θ) · s
n−k · det(I − srSrel)r

n−k+1 ds dS dM̄

where dS is the volume form on Sn−k and dM̄ =
ν · dA, for dA the Riemannian volume form on M .

The proof of Theorem 4.12 will be given in §7.
In the case of a swept region Ω ⊂ R

3 bounded by
a polar swept surface along a cuve γ(t), the formula
takes the following form (rewritten so r becomes a
limit of integration).
Corollary 4.13 Let Ω be a swept region Ω ⊂ R

3

bounded by a polar swept surface B along a curve
γ(t). For Borel integrable function g : Ω → R,we
may express the integral as an iterated integral
∫

Ω

g dV = (44)
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∫

γ

∫

S1





r
∫

0

g(s′, t, θ) · s′ · (1 − s′κrel) ds
′



 dℓ ds̄

where dℓ is the length form on S1 and ds̄ = ν · ds,
for ds the length form on γ(t).

5. Proofs of Propositions 2.8 and 3.4

Both Propositions 2.8 and 3.4 involve swept skele-
tal structures in R

3 defined by a family of planes
{Πt} along a curve γ(t). We use the notion for Propo-
sition 3.4, and first prove that proposition by explic-
iting computing the relative shape operator. Second,
although there is probably a more elegant way to
prove Proposition 2.8, we shall proceed directly and
use a formula for the principal edge curvature for
skeletal structures in R

3 given in [D3], and see that
the computation yields exactly (26).
Proof of Proposition 3.4 : In terms of the no-
tation for this proposition, we begin by representing
the basis {U,Xθ, Xt} in terms of the orthonormal
frame {e1, e2, e3}. Here Xθ and Xt denote partial
derivatives with respect to θ and t.

Xθ = c1 θe1 + c2 θe2 (45)

where we abbreviate ∂ci

∂θ
= ci θ and ∂ci

∂t
= ci t. Also,

Xt = γ′(t) + c1 te1 + c2 te2

+ c1
∂e1

∂t
+ c2

∂e2

∂t
(46)

From (46), and (23) and the skew symmetry of
ωij , we obtain

Xt = (γ1 − c2ω12 + c1 t)e1 + (γ2 + c1ω12 + c2 t)e2

+ (γ3 + c1ω13 + c2ω23)e3 (47)

We denote the coefficient of each ei in (47) by γ̃i.
Then, the matrix for the representation of

{U,Xθ, Xt} in terms of the orthonormal frame
{e1, e2, e3} is given by

A =











α1 c1 θ γ̃1

α2 c2 θ γ̃2

0 0 γ̃3











(48)

We note that A has the form

A =





A1 B

0 b3



 (49)

for a 2× 2 matrix A1 and column vector B. Hence,
the matrix representing the orthonormal frame
{e1, e2, e3} with respect to the basis {U,Xθ, Xt} is
given by A−1 which has the form

A−1 =





A−1
1 −b−1

3 A−1
1 B

0 b−1
3



 (50)

Next, we compute

∂U

∂t
= α1 te1 + α1

∂e1

∂t
+ α2 te2 + α2

∂e2

∂t
(51)

where αi t denotes ∂αi

∂t
. We can rewrite (51)

∂U

∂t
= (α1 t − α2ω12)e1 + (α2 t + α1ω12)e2

+ (α1ω13 + α2ω23)e3 (52)

We may also compute

∂U

∂t
=

∂r

∂t
U1 + r

∂U1

∂t
(53)

As U1 ∈ Πt0 ,

−projΠt0
(
∂U

∂t
) = −r · projΠt0

(
∂U1

∂t
)

= rκrelXt (54)

As e1, e2 ∈ Πt0 , from (52) we obtain

−projΠt0
(
∂U

∂t
) = −(α1ω13 + α2ω23)projΠt0

(e3)(55)

Finally, we may express e3 in terms of the basis
{U,Xθ, Xt}, and obtain from (50) that the coeffi-
cient of Xt is γ̃−1

3 . Then, as U,Xθ ∈ Πt0 , we obtain
from (54) and (52)

rκrelXt = −(α1ω13 + α2ω23) · γ̃
−1
3 Xt (56)

Equating the coefficients ofXt and using the expres-
sion for γ̃3 gives the desired result. 2

We next turn to the proof of Proposition 2.8.
Proof of Proposition 2.8 : We now assume that
γ(t) parametrizes a part of the edge curve of the
skeletal set M and that again U1 = e1. Here the
parametrizationX(t, θ) as defined by (21) gives edge
coordinates for a neighborhood of the edge point
γ(t0) = ψ1(x) so that X(t, 0) = γ(t) and ∂X

∂θ
(t, 0) =

ce1 for c > 0.
Suppose we have a matrix representation of the

edge shape operator SE with respect to the bases
{γ′(t0), e1} and {γ′(t0),n} given by

[SE ] =





b1 b2

cn 1 cn 2



 (57)
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Then, we recall from Example 2.4 of [D3] that the
principal edge curvature is given by

κE = c−1
n 2 det([SE ]) (58)

To compute a matrix representation for the edge
shape operator, we must compute ∂U1

∂t
and ∂U1

∂θ
at

(t, θ) = (t0, 0). First, since X(t, 0) = γ(t), and on
γ(t), U1 = e1, we have already computed the first of
these derivatives in (23)

∂U1

∂t
(t0, 0) = ω12e2 + ω13e3 (59)

Second, from (22)

∂U

∂θ
= α1 θe1 + α2 θe2 (60)

At (t0, 0), U1 = e1, so α1 = r and α2 = 0. Also, for
fixed t = t0, U1 ∈ Πt0 for all θ; hence, ∂U1

∂θ
∈ Πt0

As ‖U1‖ = 1, ∂U1

∂θ
is orthogonal to U1 = e1, when

θ = 0. Thus, ∂U1

∂θ
(t0, 0) = ce2 for some c. From the

analogue of (53) for derivatives with respect to θ, we
obtain at (t0, 0)

α1 θe1 + α2 θe2 = rθe1 + rce2 (61)

Then, at (t0, 0), rθ = α1 θ, and c = α2 θ

α1
. Hence,

∂U1

∂θ
(t0, 0) =

α2 θ

α1
· e2 (62)

Next, we compute the matrix representation of
{e1,n, Xt} with respect to the orthonormal frame
{e1, e2, e3}, which we suppose is positively oriented.
Here n is the unit normal vector field onM pointing
on the same side ofM asU . We can compute n as the
normalized unit vector field obtained from Xt × e1.

We are interested in the point (t0, 0). Since
X(t, 0) = γ(t), c1 = c2 = 0 and c1 t = c2 t = 0 at
(t0, 0). Hence, for the form of Xt in (47), γ̃i = γi,
and we obtain

n =
1

γ̂
(γ3e2 − γ2e3) where γ̂2 = γ2

2 + γ2
3(63)

Thus, we obtain the matrix for the representation
of {e1,n, Xt} in terms of the orthonormal frame
{e1, e2, e3} is given by

C =













1 0 γ1

0 −
γ3

γ̂
γ2

0
γ2

γ̂
γ3













(64)

We again note that C has the form

C =





1 D

0 C1



 (65)

for a 2 × 2 matrix C1 and row vector D. Hence,
the matrix representing the orthonormal frame
{e1, e2, e3} with respect to the basis {e1,n, Xt} is
given by C−1 which has the form

C−1 =





1 −DC−1
1

0 C−1
1



 (66)

A straightforward calculation shows (using γ̂2 =
γ2
2 + γ2

3)

C−1
1 = −

1

γ̂
·





γ3 −γ2

−
γ2

γ̂
−
γ3

γ̂



 (67)

Then, SE is given by minus the projection of
{∂U1

∂t
, ∂U1

∂θ
} along U onto the subspace with basis

{Xt,n}. From (62) and (59), we obtain for the
matrix representation of SE

[SE ] = −







1

γ̂2
(γ2ω12 + γ3ω13)

α2 θ

α1
·
γ2

γ̂2

(−γ3ω12 + γ2ω13) −
α2 θ

α1
· γ3






(68)

Hence, applying (58) with [SE ] given by (68), we
obtain after expanding and simplifying,

κE = −
ω13

γ3
(69)

However, this is exactly the formula for κrel in the
case γ(t) parametrizes an edge curve given in Corol-
lary 3.5. 2

6. Proof of Proposition 2.10

Proof :
To prove Proposition 2.10, we must compute the

radial shape operator for Bt(s) and then the rela-
tive shape operator for the swept skeletal structure
(B(s), U(s)).
Lemma 6.1 For the skeletal structure (Bt(s), U(s)),

Srad(Bt(s)) = −
1

sr
· In−k
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Proof of the Lemma : We express the
parametrization of Bt by r(θ) · U1, where U1 is
the unit radial vector field in Πt and θ ∈ Sn−k,
the unit sphere in Ex. Then, ψ(θ) = sr(θ) · U1 is
the parametrization of Bt(s). We let (θ1, . . . , θn−k)
denote local coordinates for Sn−k near x̃.

We compute

vi =
∂ψ

∂θi

= s

(

∂r

∂θi

· U1 + r ·
∂U1

∂θi

)

(70)

Let wi = ∂U1

∂θi
∈ Tx̃S

n−k. Then,

∂U1

∂vi

=
∂U1

∂θi

= wi

Hence, from (70)

∂U1

∂vi

= wi =
1

sr
vi −

1

r
·
∂r

∂θi

· U1

Thus,

−projU (
∂U1

∂vi

) = −
1

sr
vi

giving the result. 2

Remark Lemma 6.1 says that the radial shape op-
erator for Bt(s) contains essentially no information
about the hypersurface Bt. However, we note that all
principal radial curvatures = − 1

sr
are negative, so

there are no restrictions on the level sets being smooth
. This is consistent with Corollary 3.2, as a level set
is obtained from Bt by scalar multiplication.

To complete the proof of the proposition, we must
compute the relative shape operator. Let y = ψs(x̃).
First, we compute a basis for TyB(s). A parametriza-
tion of B(s) is given by

Ψ(t, θ) = X(t) + sr(t, θ) · U1(t, θ)

where t = (t1, . . . , tk) and θ = (θ1, . . . , θn−k) are lo-
cal coordinates for Γ, resp. Sn−k, for a local trivial-
ization of E; and X(t) is the local embedding of Γ.
Then, we let

vi
def
=

∂Ψ

∂θi

= s

(

∂r

∂θi

· U1 + r ·
∂U1

∂θi

)

(71)

and

wj
def
=

∂Ψ

∂tj
=

∂X(t)

∂tj
+ s

(

∂r

∂tj
· U1 + r ·

∂U1

∂tj

)

(72)

where all partials are evaluated at (t0, θ0) corre-
sponding to x̃ ∈ Ex.

Then, {v1, . . . , vn−k, w1, . . . , wk} is a basis for
TyB(s). We let Ny denote the subspace with basis
{w1, . . . , wk}, which is complementary to TyBt(s)
in TyB(s), which has a basis {v1, . . . , vn−k}. We also

let uj = ∂X
∂tj

(t0), so {u1, . . . , uk} is a basis for TxΓ.

From the definition of the relative shape operator

∂U1

∂uj

=
∂U1

∂tj
= zj − (ST

rel · u)j (73)

where u is a column vector with j–th entry the vec-
tor uj. Then, (73) can be more concisely written

∂U1

∂u
= z − ST

rel · u (74)

where ∂U1

∂u
and z are column vectors with j–th en-

tries ∂U1

∂uj
, resp. zj.

Likewise from (72), we obtain the vector equation

w = u + s

(

∂r

∂t
· U1 + r ·

∂U1

∂u

)

(75)

with ∂r
∂t

· U1 denoting the column vector whose j–

th entry is the vector ∂r
∂tj

·U1. Using (74) we obtain

from (75)

w = s
∂r

∂t
· U1 + sr · z + (I − srST

rel) · u (76)

The first two terms on the RHS of (76) belong to
Πt (with x ∈ Πt). A calculation analogous to that
in [D1, Proposition 4.1] shows that Ψ being a diffeo-
morphism for 0 < s < ε implies that (I − srST

rel) is
invertible for the same range of values for s. Hence,
we may write

u = z̃ + (I − srST
rel)

−1 ·w (77)

where z̃ ∈ Πt. Because a value of U(s) on B(s) is the
translate of the corresponding value of U on M (for
the appropriate θ), we compute

∂U1

∂wi |y

=
∂U1 ◦ Ψ

∂ti |(t0,θ0)

=
∂U1(t, θ)

∂ti |(t0,θ0)

=
∂U1

∂ui |(t0,θ0)

(78)

Applying (74) to (78), and using (77) to represent
u we obtain

∂U1

∂w
= z − ST

relz̃ − ST
rel(I − srST

rel)
−1 · w

= ˜̃z − (Srel(I − srSrel)
−1)T ·w (79)

Since the entries of ˜̃z = z − ST
relz̃ belong to Πt,

by the definition of the relative shape operator for
(B(s), U(s)), (79) implies

Srel(B(s)) = Srel(I − srSrel)
−1.

2
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7. Proofs of Skeletal Integral Formulas

As we have already indicated, Theorem 4.2 follows
from Theorem 6 of [D4]. We next consider Theorem
4.5
Proof of Theorem 4.5 : Because M is a Whit-
ney stratified set, which can be locally paved by the
definition of skeletal structure, we may construct a
tubular system forMsing whose union forms an open
neighborhood W ′ of measure ε

2 in Mreg. Similarly,

Σ = {x ∈M : Πt is not transverse to M at x

for some t ∈ Γ}

has measure zero by the volumetric condition. Thus,
we can also find an open neighborhood W ′′ of mea-
sure ε

2 in Mreg. We let W0 = W ′ ∪W ′′. Then, for
any point x ∈ Mreg\Σ, the map p : M → Γ is a lo-
cal submersion, so we can find a neighborhood Wα

so that p : Wα → Vα(= p(Wα)) is a trivial fibra-
tion (with fiber Mα). Then, we can find a locally
finite refinement of {W0} ∪ {Wα}α and a subordi-
nate partition of unity {χ0} ∪ {χα}α. We can pull-

back these to the double M̃ , {W̃0} ∪ {W̃
(j)
α }α, and

{χ̃0}∪ {χ̃
(j)
α }α, j = 1, 2. The W̃

(j)
α are copies of Wα

for each side ofM and χ̃
(j)
α is just χα onWα for that

side.
If g1 is integrable on M̃ , then

∫

M̃

g1 dM

=

∫

M̃

χ̃0 · g1 dM +
∑

α,j

∫

M̃

χ̃(j)
α · g1 dM

=

∫

W̃0

χ̃0 · g1 dM +
∑

α,j

∫

W̃
(j)
α

χ̃(j)
α · g1 dM

=

∫

W̃0

χ̃0 · g1 dM +
∑

α,j

∫

Wα

χα · g1 dM (80)

where on the RHS of the last line, we evaluate the

multivalued g1 on the side corresponding to W
(j)
α .

We consider one of the integrals, so we assume
that h1 = χα · g1 has compact support in one Wα

on only one side of M .
Lemma 7.1 In the preceding situation

∫

Wα

h1 dM =

∫

Vα

∫

M̃x

h1 dM̄xdVΓ (81)

Proof of Lemma 7.1 : We let W ′
α = V ′

α ×U ′
α ⊂

R
n be an open subset and φ : W ′

α → Wα a smooth
parametrization so that p ◦ φ(x, y) = φ0(x) for φ0 :
V ′

α → Vα also a smooth parametrization. Then,
∫

Wα

h1 dM =

∫

Wα

h1 · ρ dV =

∫

W ′

α

(h1 · ρ) ◦ φ φ
∗dV

We compute

dV (w1, . . . , wn) = det(n, w1, . . . , wn)

for n normal to M . Then,

φ∗dV (
∂

∂x1
, . . . ,

∂

∂xk

,
∂

∂u1
, . . . ,

∂

∂un−k

) =

dV (
∂φ

∂x1
, . . . ,

∂φ

∂xk

,
∂φ

∂u1
, . . . ,

∂φ

∂un−k

)

From p◦φ(x, y) = φ0(x), and lettingMz = p−1(z)
we have

∂φ

∂xi

=
∂φ0

∂xi

+ wi =

k
∑

j=1

aijej + wi

for {e1, . . . , ek} an orthonormal basis for Tφ0(x)Vα

and wi ∈ Tφ(x,y)Mφ0(x). We may also write

∂φ

∂ui

=
n−k
∑

j=1

bije
′
j

for {e′1, . . . , e
′
n−k} an orthonormal basis forTφ(x,y)Mφ0(x).

Let A = (aij) and B = (bij), Then, we may ex-
pand

dV (
∂φ

∂x1
, . . . ,

∂φ

∂xk

,
∂φ

∂u1
, . . . ,

∂φ

∂un−k

)

= det(B)dV (
∂φ

∂x1
, . . . ,

∂φ

∂xk

, e′1, . . . , e
′
n−k)

= det(B) · det(A) · dV (e1, . . . , ek, e
′
1, . . . , e

′
n−k)

= det(B) · det(A)dV (e′′1 , . . . , e
′′
k, e

′
1, . . . , e

′
n−k)(82)

where dp(e′′i ) = ei. Then, by the definition of ν,
the right hand side of (82) equals det(B) · det(A) ·
ν(φ(x, y)). Thus, the integral becomes
∫

W ′

α

φ∗(h1 · ρ · dV ) =

∫

W ′

α

(h1 · ρ) ◦ φ · det(B) · det(A) · ν(φ(x, y))

dx1 . . . dxkdy1 . . . dyn−k (83)

Then, det(B) ·dy1 . . . dyn−k is the pull-back of the
Riemannian volume dAt on Mφ0(x,y), and det(A) ·
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dx1 . . . dxk is the pull-back of dVVα
. By changing the

order of integration in (83) we obtain
∫

W ′

α

h1 dM

=

∫

V ′

α







∫

U ′

α

h1 · (ρ · ν) ◦ φ · det(B)dy1 . . . dyn−k






·

det(A) dx1 . . . dxk

=

∫

Vα

∫

M̃x

h1 dM̄xdVΓ (84)

2

By Lemma 7.1 applied to each integral on the RHS
of (80), we obtain

∫

M̃

g1 dM

=

∫

M̃

χ̃0 · g1 dM +
∑

α,j

∫

Γ

∫

M̃x

χ̃(j)
α · g1 dM̄xdVΓ

=

∫

M̃

χ̃0 · g1 dM +

∫

Γ

∫

M̃x

(1 − χ̃0) · g1 dM̄xdVΓ (85)

Then, since we choose a sequence ε → 0 and a
decreasing sequence of tubular systems Nε whose
intersection is Σ ∪ Msing, so χ0 → 0 as ε → 0 .
Then, applying the dominated convergence theorem
to each term on the RHS, we obtain
∫

M̃

g1dM = 0 +

∫

Γ

∫

M̃x

g1 dM̄xdVΓ (86)

Finally, using (86) with g1 replaced by ḡ defined by
(31), we obtain the result. 2

Proof of Theorem 4.12 : We follow the same
line of argument as for the proof of Theorem 4.5,
except that W ′

α = V ′
α × U ′

α × [0, 1] where V ′
α

parametrizes an open subset of Sn−k and U ′
α is an

open subset of M , which we may assume is a sub-
manifold of R

n+1. We let W̃ ′
α = π−1(W ′

α) ⊂ M̃ . For
simplicity, in what follows we drop the subscript α.

The parametrization map for the part of Ω ob-
tained from the radial flow from W ′ is given by

ψ(x, θ, t) = x + t · r(x, θ) · U1(x, θ) (87)

where θ = (θ1, · · · , θn−k). Then, for a point y0 =
ψ(x0, θ0, t0), we let v = {v1, · · · , vk} denote a
positively oriented orthonormal basis for Tx0M ,

and w = {w1, · · · , wn−k} a positively oriented or-
thonormal basis for Sn−k at θ0 We also let w′ =
{w′

1, · · · , w
′
n−k} be their images under dψ(x0, θ, 1)

(so that {U1, w
′
1, · · · , w

′
n−k, v1, · · · , vk} is positively

priented for R
n+1.

Then, we compute

∂ψ

∂t
= rU1;

∂ψ

∂wj

= t
∂r

∂wj

U1 + t · r
∂U1

∂wj

(88)

and

∂ψ

∂vi

= vi + t
∂r

∂vi

U1 + t · r
∂U1

∂vi

(89)

We also have,

∂U1

∂wj

= w′
j and

∂U1

∂vi

= zj − Srel(vi) (90)

with zj ∈ Πt0 .
Then, by using (88), (89) and (90), we may com-

pute

ψ∗dV (
∂

∂t
, w1, · · · , wn−k, v1, · · · , vk)

= det(dψ(t), dψ(w1), . . . , dψ(vk))

which equals

= r det(U1, dψ(w1), . . . , dψ(vk))

= tn−krn−k+1 det(U1, w
′
1, . . . , w

′
n−k,

dψ(v1), . . . , dψ(vk))

= tn−krn−k+1 det(U1, w
′
1, . . . , w

′
n−k,

(I − trSrel)(v1), . . . , (I − tr · Srel)(vk))

= tn−krn−k+1 det(I − tr · Srel) ·

det(U1, w
′
1, . . . , w

′
n−k, v1, . . . , vk)

= tn−krn−k+1 det(I − tr · Srel)ν(y0) (91)

Hence,

ψ∗dV = tn−krn−k+1 det(I − tr · Srel) ·

ν · dt dS dA (92)

for dS the volume form on Sn−k and dA is the vol-
ume form on M .

We again use the change of variables formula.
∫

W ′

α

χα · g1 dV

=

∫

V ′

α

∫

U ′

α

1
∫

0

χα · g1 · t
n−krn−k+1 det(I − tr · Srel) ·
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νdt dS dA

=

∫

V ′

α

∫

U ′

α

(

1
∫

0

χα · g1 · t
n−k · det(I − tr · Srel)dt) ·

rn−k+1 dS dM̄

=

∫

M

∫

Sn−k

(

1
∫

0

χα · g1 · t
n−k · det(I − tr · Srel)dt) ·

rn−k+1 dSdM̄ (93)

Summing (93) over α yields the desired result. 2
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