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Abstract

This paper applies singularity theory of mappings of surfaces to 3-space and the
generic transitions occurring in their deformations to develop algorithms for contin-
uously and robustly tracking the intersection curves of two deforming parametric
spline surfaces, when the deformation is represented as a family of generalized offset
surfaces. The set of intersection curves of 2 deforming surfaces over all time is for-
mulated as an implicit 2-manifold I in an augmented (by time domain) parametric
space R

5. Hyper-planes corresponding to some fixed time instants may touch I at
some isolated transition points, which delineate transition events, i.e., the topologi-
cal changes to the intersection curves. These transition points are the 0-dimensional
solution to a rational system of 5 constraints in 5 variables, and can be computed
efficiently and robustly with a rational constraint solver using subdivision and hyper-
tangent bounding cones. The actual transition events are computed by contouring
the local osculating paraboloids. Away from any transition points, the intersection
curves do not change topology and evolve according to a simple evolution vector
field that is constructed in the Euclidean space in which the surfaces are embedded.

Key words: Deforming Surface/Surface Intersection, Generalized Offset Surface,
Evolution Vector Field, Topological Transition Event, Shape Computation of
Implicit 2-Manifold in 5-Space

⋆ This work is supported in part by NSF CCR-0310705, NSF IIS-0218809, NSF
CCR-0310546, and NSF DMS-0405947. All opinions, findings, conclusions or rec-
ommendations expressed in this document are those of the authors and do not
necessarily reflect the views of the sponsoring agencies.

Email address: xchen@cs.utah.edu (Xianming Chen).
URL: http://www.cs.utah.edu/∼xchen/ (Xianming Chen).

Preprint submitted to Elsevier 13 November 2006



1 Introduction and Related Work

In this paper, we consider the dynamically changing intersection of two de-
forming parametric surfaces. The surface deformations are represented by fam-
ilies of generalized offset surfaces, which are examples of “radial flows”of gener-
alized offset vector fields introduced in [6, 7] (also see [8] for a mathematically
less technical discussion). This extends the standard unit normal offset sur-
faces. Specifically, let ς(s), s ∈ R

2, be a parametrization of an initial regular
surface M . A generalized offset vector field U(s) on M is a vector field U(s)
defined on M which is not tangent to M at any point, and need not have unit-
length nor be orthogonal to the tangent plane of M . The generalized offset
surface flow is defined by,

σ(s, t) = ς(s) + tU(s); (1)

where 0 ≤ t ≤ 1 is the offset time. Each of the two deforming surfaces is
assumed to remain regular and be free of self-intersections throughout the de-
formation process. Conditions ensuring such regularity are given in [6] and [8].

Research into finding surface-surface intersections has mostly focused on the
static problem [4, 16, 28, 34, 39], and the case of the unit normal offset sur-
faces [9, 11, 12, 18, 21, 23, 29, 37], We emphasize the topological robustness of
surface intersection, which has been an important and extensively researched
topic for static surface-surface intersection [2, 15, 20, 24, 25, 31, 32]. In [17],
Jun et al. worked on surface slicing, i.e., the intersection of a surface with a
series of parallel planes, exploring the relation between the transition points
and the topology of contour curves. The transition points, though, are used
only to efficiently and robustly find the starting point of the contour curves
for a marching algorithm [3, 5] to trace out the whole curve. Ouyang et al. [27]
applied a similar approach to the intersection of two unit normal vector offset
surfaces.

Applied to mappings of surfaces to R
3, singularity theory [1] provides a theo-

retical classification of both the local stable properties of mappings of surfaces
and of the generic transitions they undergo under deformation. Our assump-
tions on the regularity of the surfaces characterizes the transition of the in-
tersection curves of the deforming surfaces to one of a list of standard generic
transitions. Between transitions, the intersection curves evolve in a smooth
way without undergoing topological transitions.

This paper is organized to deal with these two cases. In Section 2, we construct
an evolution vector field which allows us to follow the evolution of intersection
curves by discretely solving a differential equation in the parametric space. In
Section 3, we represent the locus of intersection curves of the two deforming
surfaces as a 2–manifold I in a 5–dimensional augmented parameter space. In
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Section 4 we turn to the second problem of computing the transition events,
and tracking the topological changes of the intersection curves occurring at
transition points. In Section 4.1, we enumerate the generic transition points
classified by singularity theory and provide an alternative characterization as
critical points of a function on the implicit surface I. This provides the theo-
retical basis to our algorithm that detects transition points as the simultaneous
0-set of a rational system of 5 constraints in 5 variables. Then, in Section 4.2
we compute the transitions in the intersection curves using contours on the
local osculating quadric of the surface I at the critical points. A concluding
discussion of the issues ensues in Section 5.

2 Evolution of Intersection Curves

Consider two deforming surfaces, σ and σ̂, represented as generalized offset
surfaces,

σ(s, t) = ς(s) + t U(s),

σ̂(ŝ, t) = ς̂(ŝ) + t Û(ŝ),

where s = (s1, s2) ∈ R
2 and ŝ = (ŝ1, ŝ2) ∈ R

2 are the parameters of ς(s) and
ς̂(ŝ), and their corresponding offset vector fields U(s) and Û(ŝ), respectively.
We write the coordinate representation of the deforming surfaces by

σ(s, t) = (x(s, t), y(s, t), z(s, t)) and σ̂(ŝ, t) = (x̂(ŝ, t), ŷ(ŝ, t), ẑ(ŝ, t)).

We let L0 denote the set of the points in R
3 which will lie on the intersection

of the two deforming surfaces for at least one time t. Consider a point P on
an intersection curve of the two deforming surfaces at some time t. We first
assume that the tangent planes to the two offset surfaces at P are different;
otherwise, we are in the singular case corresponding to a transition event,
which we will discuss in section 4. We use the notation σi = (xi, yi, zi) to
denote the partial derivative ∂σ

∂si

= ( ∂x
∂si

, ∂y
∂si

, ∂z
∂si

) (i = 1, 2), and analogously for
σ̂i. Define

N = σ1 × σ2, N̂ = σ̂1 × σ̂2

to be the 2 non-unit length normals to each of the two surfaces, respectively.
Further let

N̄ = (N × N̂) × N̂ .

to be the tangent vector of σ̂ at P that is perpendicular to the intersection
curve.
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Fig. 1. Local Basis {σ1, σ2, N̄}

Because the two tangent planes to the two surfaces at P are different, {σ1, σ2, N̄}
is a basis of R

3 (Fig. 1). Decomposing δU = Û − U in this basis gives,

δU = Û − U = aσ1 + bσ2 + cN̄

Because the last term cN̄ lives entirely in the tangent plane to the surface σ̂

at P , it has a decomposition relative to the basis {σ̂1, σ̂2},

−cN̄ = âσ̂1 + b̂σ̂2,

Thus, we have

δU = Û − U = aσ1 + bσ2 + (−âσ̂1 − b̂σ̂2),

or,
Û + (âσ̂1 + b̂σ̂2) = U + aσ1 + bσ2

Consequently, we have the evolution vector field with two equivalent rep-
resentations (over two different basis of R

3),

η = U + aσ1 + bσ2 (2)

η̂ = Û + âσ̂1 + b̂σ̂2 (3)

This vector field is defined on a neighborhood of the point P in R
3, rather

than just on the surfaces.

Next, for any point P which lies on a curve of intersection for the deforming
surfaces, we can define a scalar field φ in a neighborhood of P (in R

3). By
the inverse function theorem, there is a neighborhood of P which is entirely
covered by each deforming family. For a point P ′ in this neighborhood, we
define φ(P ′) = t̂ − t, where t̂ (resp. t) is the time when the surface σ̂(ŝ, t)
(resp. σ(s, t)) reaches P ′. Although φ is not defined everywhere on R

3, it is
defined on a neighborhood of L0.

The following properties involving φ, η, and L0 can be shown to hold:

(1) The directional derivative ∂φ
∂η

= 0 identically wherever φ is defined. This
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is readily verified by directly computing the directional derivative of φ

with respect to η.
(2) The zero level set of φ is exactly L0.
(3) Hence, η is tangent to L0 at all points.

Now suppose point P is on L0, and lies on an intersection curve at time t.
The condition that η is tangent to L0 allows us to follow the evolution of P

on future intersection curves by solving the differential equation

dγ

dt
= η(γ) with initial condition γ(0) = P

for γ(t) ∈ R
3. The evolution vector field η is the image of the vector field

ξ = ∂
∂t

+ a ∂
∂s1

+ b ∂
∂s2

under the parametrization map σ. Thus, the evolution
could likewise be followed on the parameter space using instead the vector
field ξ, and analogously for σ̂.

Then, we can use a discrete algorithm for solving the differential equations
to follow the evolution of the intersection curves over a time interval void
of transitions. Specifically, for small time dt, P moves to Q = P + dt (U +
aσ1 + bσ2) on the physical surface, and if p = s ∈ R

2 corresponds to P ,
then q = s + (a dt, b dt) will correspond to Q in the parameter space, and
analogously for σ̂. The first order marching algorithm accumulates error over
time, so point correction can be used to increase the quality. Various point
correction algorithms are discussed in [5] in the context of static surface-surface
intersection. We have adopted the middle point algorithm as presented in [4] to
relax the points onto the actual intersection curve. As the evolution proceeds,
sample points for the intersection curves are adaptively inserted or deleted so
that the spacing of two consecutive sample points is neither too far away nor
too close, and so that the angle deviation of 3 consecutive sample points stays
small.

3 Formulation in the Augmented Parametric Space

Define a vector distance mapping

d(s, ŝ, t) = σ̂ − σ : R
5
{s,ŝ,t} −→ R

3 (4)

where R
5
{s,ŝ,t}

1 is the combined parametric space of the two surfaces and the
time domain, and is thus called augmented parametric space. The canon-
ical orthonormal basis R

5
{s,ŝ,t} is denoted as {es1

, es2
, eŝ1

, eŝ2
, et}. The 0-set of

1
R

5
{s,ŝ,t} denotes R

5 with the five coordinates being s1, s2, ŝ1, ŝ2, t and analogously,

for R
3
{s,t}, etc.
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this mapping, denoted I hereafter in this paper, gives the set of all intersection
points in R

5
{s,ŝ,t}. Note that d(s, ŝ, t) concisely represents related equations for

three separate coordinate functions. Considering the x-component dx(s, ŝ, t).
dx(s, ŝ, t) = 0 defines a hyper-surface in R

5
{s,ŝ,t}, with corresponding normal

Nx = ∇dx = (−x1, − x2, x̂1, x̂2, δUx) (5)

The component functions y and z define another two hyper-surfaces with anal-
ogous expressions for their normals Ny and Nz. Geometrically, I is the locus of
intersection points of these three hyper-surfaces in R

5
{s,ŝ,t}. The Jacobian [22]

of the mapping d(s, ŝ, t) : R
5
{s,ŝ,t} −→ R

3 is,

J = (Nx Ny Nz)
t =















−x1 −x2 x̂1 x̂2 δUx

−y1 −y2 ŷ1 ŷ2 δUy

−z1 −z2 ẑ1 ẑ2 δUz















= (−σ1 − σ2 σ̂1 σ̂2 δU). (6)

Remark 1 If the two tangent planes to the two deforming surfaces at the
intersection point are not the same, then both of the triple scalar products
(determinants) [σ1σ2σ̂i]’s (i = 1, 2) can not simultaneously vanish, and so J
has the full rank of 3. Otherwise, the two tangent planes must be the same.
Assuming, at such a touching point, δU is not on the common tangent plane,
i.e., [σ̂1σ̂2δU ] 6= 0 and [σ1σ2δU ] 6= 0, J again has the full rank. Therefore,
the 0-set of the distance mapping d(s, ŝ, t) = σ̂ − σ : R

5
{s,ŝ,t} −→ R

3, is a well
defined implicit 2-manifold in the augmented parametric space.

4 Transition of Intersection Loops

In singularity theory, the situation we consider is considered generic. That
is, except for a finite set of times, the two closed surfaces intersect trans-
versely, that is, at each intersection point the tangent planes of the surfaces
are different. Thus, the method presented in Section 2 can be applied to track
the evolution of the curves. Over such time intervals topological changes are
guaranteed not to occur.

At the remaining finite number of times, there will be intersection points at
which the tangent planes coincide (non-transverse points). Again for generic
deformations, singularity theory describes exactly the transitions in intersec-
tion curves that can occur as the evolution passes such times. These transi-
tions can always be given (up to a change of coordinates) by standard model
equations, so there is essentially a unique way for each transition to occur.
We shall refer to points (and times) at which transitions occur as transition
points. These transitions are classified as,
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Fig. 2. Creation of Intersection Curve Component

Fig. 3. Exchange of Intersection Curve Components

(1) a creation event, when a new intersection loop is created (Fig. 2),
(2) an annihilation event, when one of the current loops collapses and disap-

pears (Fig. 2 in the reverse direction),
(3) an exchange event, when two branches of intersection curves meet and

exchange branches (Fig. 3).

The exchange event can have two different global consequences. If the two
branches are part of the same curve, an intersection loop is split into two
loops and we refer to this as a splitting event (Fig. 6). If the branches are from
distinct intersection loops, a single loop is formed in a merge event (Fig. 6 in
reverse order).

4.1 Detection of Transition Events

In this sub-section, we formulate the topological transition points as the 0-set
of a rational system of 5 nonlinear constraints in 5 variables. The 0-set has
dimension 0, i.e., it is a discrete collection of points. It can be robustly and effi-
ciently computed using a rational constraint solver [10, 33]. The robustness is
achieved by bounding the subdivided implicit surface I with the correspond-
ing hyper-tangent cone [10], an extension of the bounding tangent cones for
explicit plane curves and explicit surfaces [31, 32].

Let us recall that the implicit 2-manifold I in R
5
{s,ŝ,t} is the locus of intersection

points of the two deforming surfaces, over the whole time period. Geometri-
cally, the intersection curves, at some time point, are the corresponding height
contour of I when the t is regarded as the vertical axis. By Remark 1, I is
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a well-defined 2-manifold, and as a consequence of the generic forms for the
transition points, the height function t has only non-degenerate critical points
which are of the three types: upward elliptic points, downward elliptic points,
and hyperbolic (saddle) points (cf. Fig. 4). Therefore, it is obvious that there
will be one of the three transition events listed earlier, if the tangent space to
I at a point (s, ŝ, t) is orthogonal to the t-axis. Since I and its tangent space
have the same dimension, namely, 2, the orthogonality condition is tantamount
to satisfying two equations,

T1 ··· et = 0, T2 ··· et = 0,

where T1 and T2 are any two vectors spanning the tangent space. A simple
and natural way to construct such a pair of tangent vectors is to let T1 be
the tangent to an s2-iso-curve on I with the extra constraint s2 = c2 for some
constant c2, and let T2 be the tangent to an s1-iso-curve on I with the extra
constant s1 = c1 for some constant c1. Noticing that an s2-iso-curve is the
intersection of 4 hyper surfaces in R

5
{s,ŝ,t}, defined by s2 = c2, dx = 0, dy = 0,

and dz = 0,

T1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

es1
es2

eŝ1
eŝ2

et

0 1 0 0 0

−x1 −x2 x̂1 x̂2 δUx

−y1 −y2 ŷ1 ŷ2 δUy

−z1 −z2 ẑ1 ẑ2 δUz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (T 1̂2̂δ, 0, T
12̂δ, − T

11̂δ, T
11̂2̂),

where T ’ denotes the triple scalar product of its 3 corresponding vectors
indicated by the superscripts. Superscripts i and î represent σi and σ̂i, respec-
tively, while a superscript δ represents δU (e.g., T 1̂2̂δ = [σ̂1 σ̂2 δU ]). A similar
derivation exists for T2. Thus, we have in general

Ti = T
1̂2̂δ esi

+ T
i2̂δ eŝ1

− T
i1̂δ eŝ2

+ T
i1̂2̂ et, i = 1, 2. (7)

At transition points, the last component of T1 and T2 vanishes, i.e.

T1 ··· et = T
11̂2̂ = [σ1 σ̂1 σ̂2] = 0, T2 ··· et = T

21̂2̂ = [σ2 σ̂1 σ̂2] = 0, (8)

Remark 2 At a transition point, T1 and T2 are guaranteed to be independent
of each other because, by Eq. (7), the s1 coordinate component of T2 vanishes
while the corresponding component of T1 is non-zero (cf. Remark (1) as well).
It is also easily seen that Eq. (8) simply requires the two tangents σ1 and
σ2 to the first offset surface to be perpendicular to the normal of the second
offset surface, i.e., the two tangent planes to the two deforming surfaces in the
euclidean space are coincident.
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Finally, together with σ̂ − σ = 0, Eq. (8) gives a rational system with 5
constraints in 5 variables, whose 0-dimensional solution set contains all the
transition points we are seeking.

4.2 Compute the Structural Change at Transition Events

In this section, we perform the shape computation of the 2-manifold I at a
transition point, and subsequently compute the corresponding transition event
by contouring the osculating paraboloid [19, 26] to the local shape (Fig. 4).

p 

(a) elliptic

p

(b) hyperbolic

Fig. 4. Contour Osculating Paraboloid

The implicit surface I is a 2-manifold in a 5-space R
5
{s,ŝ,t}. Shape computation

is difficult because it is an implicit surface, and also because its codimension
6= 1.

Most recently, a comprehensive set of formulas for curvature computation on
implicit curves/surfaces with further references were presented in [13]. How-
ever, it is limited to curves/surfaces embedded in 2D or 3D spaces. There
exists some literature from the visualization community, e.g., [14, 36] and
references therein, that develops second order derivative computation on iso-
surfaces extracted from trivariate functions. Most of these approaches use dis-
crete approximations. Recently, [35] developed B-spline representations for the
Gaussian curvature and squared mean curvature of the iso-surfaces extracted
from volumetric data defined as a trivariate B-spline function, and subse-
quently presented an exact curvature computation for every possible point of
the 3D domain. While we seek an exact differential computation, the task here
significantly differs from that in [35] and [14, 36] since the implicit 2-manifold
I has codimension 3. In [38], a set of formulas for computing Riemannian
curvature, mean curvature vector, and principal curvatures, specifically for a
2-manifold, and with arbitrary codimension, is presented. The specific 2nd
order problem we seek to solve, namely initializing the newly created intersec-
tion loop, or switching the two pairs of hyperbolic-like segments, is based on
shape approximation. For a surface in 3-space, the local shape approximation is
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simply the osculating quadric, expressed in the second fundamental form [26]
as z = 1

2
II(a, a) where a is any tangent vector, and z is the vertical distance

from the local surface point to the tangent plane. Observing that the second
order shape approximation is best done if the codimension is 1, we do not
compute the second fundamental form directly on the 2-manifold in 5-space.
Instead, we project the 2-manifold to a 3-space of either R

3
{s,t} (our choice

in this paper) or R
3
{ŝ,t}. The second fundamental form is then computed for

this projected 2-manifold, and shape approximation is achieved subsequently.
Notice that the shape approximation in the projected 3-space gives only a
partial answer to the transition event; the full solution is achieved by the tan-
gential mapping between the projected 2-manifold and the original one (cf.
Observation 1 below).

4.2.1 Projection of I to R
3
{s,t}

Near a critical point, T1 and T2 (cf. Eq. (7)) give two vectors spanning (cf.
Remark 2) the tangent space to I. By projecting I onto R3

{s1,s2,t} and ignoring

the ŝ1 and ŝ2 components, we transform I, a 2-manifold in R
5
{s,ŝ,t}, into a

surface in R3
{s,t}, denoted as Is. Furthermore, T1 and T2 are projected to

T s
1 = T

1̂2̂δ es1
+ T

11̂2̂ et, T s
2 = T

1̂2̂δ es2
+ T

21̂2̂ et, (9)

where we have used the superscript s to distinguish the tangents from their
counterparts of I in the original augmented parametric space R

5
{s,ŝ,t}.

Exactly at the transition point where T 11̂2̂ = T 21̂2̂ = 0 (cf. Eq. (8)), we have,

T s
1 = T

1̂2̂δ es1
, T s

2 = T
1̂2̂δ es2

.

Hereafter, a point in the tangent space TSIs is typically specified by its 2
coordinates, say, a1 and a2, with respect to the basis {T s

1 , T s
2}, the canonical

frame {es1
, es2

} scaled by T 1̂2̂δ.

Notice that, T1 and T2 span the tangent space to I in the 5-space R5
{s1,s2,ŝ1,ŝ2,t},

while their projection T s
1 and T s

2 span the tangent space to Is in the 3-space
R3

{s1,s2,t}. Therefore, the projection, denoted as π hereafter, is a diffeomor-
phism.

Observation 1 At a transition point, the inverse of the derivative of π maps
(cf. Eqs. (7)),

(1, 0) 7→ (T 1̂2̂δ, 0, T 12̂δ,−T
11̂δ, 0), (0, 1) 7→ (0, T 1̂2̂δ, T 22̂δ,−T

21̂δ, 0),

where (1, 0) and (0, 1) are the coordinates of two points in the local tangent
space TSIs with basis {T s

1 , T s
2}.
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4.2.2 The Shape Computation

The local shape of Is in R
3
{s,t} is determined from the second fundamental

form II.

Typically, II of any parameterized surface is represented in a matrix form
involving the 2nd order partial derivatives of the surface with respect to its
parameters. Even though, the surface Is we are considering is implicitly de-
fined rather than being given by a parametric representation, it does have
two independent tangent vector fields, T s

1 and T s
2 , on a neighborhood of any

transition point. Moreover, II can be computed by covariant derivatives [26]
on the tangent vector fields; specifically, at a transition point, the matrix of
the second fundamental form in the {T s

1 , T s
2} basis, denoted as L, is

L =
(

N s···∇T s

i
T s

j

)

=
(

∇T s

i
T s

j ··· et

)

, (10)

and the local shape is approximated by the osculating quadric [26, 19],

δt =
1

2
II(a, a) =

1

2

(

a1 a2

)

L







a1

a2





 , (11)

where a = (a1, a2) ∈ TSIs . Notice that we wrote the left hand side as δt,
because, at a transition point, the tangent plane TSIs is horizontal, and thus
the local vertical height is exactly the time deviation from the considered
transition point.

We compute the second fundamental form II for the surface Is in R
3 at a

transition point by computing (for i, j = 1, 2)

∇T s

i
T s

j ··· et =
∂

∂T s
i

(

(Tj ··· et) ◦ π−1
)

Since π is a local diffeomorphism, this directional derivative is the same as

∂(Tj ··· et)

∂Ti

◦ π−1

Hence, the second fundamental form of Is at the transitional point can be
computed instead by computing at the corresponding transition point in R

5

∇Ti
Tj ··· et.

Therefore, by Eq. (7),

∇T s

i
T s

j ··· et = ∇Ti
Tj ··· et = ∇Ti

(Tj ··· et) = ∇Ti
T

j1̂2̂

= T
1̂2̂δ ∂T j1̂2̂

∂si

+ T
i2̂δ ∂T j1̂2̂

∂ŝ1
− T

i1̂δ ∂T j1̂2̂

∂ŝ2
.
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Introducing the following notations (i, j, k ∈ {1, 2}),

T
ji1̂2̂ = [

∂σj

∂si

σ̂1 σ̂2], T
i1̂k2̂ = [σi

∂σ̂1

∂ŝk

σ̂2], T
i1̂2̂k = [σi σ̂1

σ̂2

∂ŝk

]

yields,

∇T s

i
T s

j ··· et = T
1̂2̂δ

T
ji1̂2̂ + T

i2̂δ (T j1̂12̂ + T
j1̂2̂1) − T

i1̂δ (T j1̂22̂ + T
j1̂2̂2).

Throughout this paper, we make the generic assumption that the transition
point is non-degenerate, i.e., det(L) 6= 0.

4.2.3 Heuristically Uniform Sampling of Local Height Contours

To compute various transition events, the height contour curves of the local
osculating quadric needs to be uniformly sampled in the euclidean space R

3.

Suppose we are sampling the height contour with the time deviation δt. By
Eq. (11), the sample point pv ∈ TSIs along a direction v ∈ TSIs , is pv =
√

2δt
II(v,v)

v. Therefore, given an initial list of sample directions, the following

algorithm generates a list of heuristically uniform sample points.

Algorithm 1 Heuristically Uniform Sampling

(1) Turn the given list of sample directions into a list of sample points by

scaling each element p by
√

2δt
II(p,p)

.

(2) In the current list, find a neighboring sample pair p, q ∈ TSIs with maxi-
mal distance.

(3) Let m = p+q
2

, scale m by
√

2δt
II(m,m)

, and insert it into the list in between

p and q.
(4) If not enough sample points, or the distances are not approximately uni-

form, goto Step 2.

4.2.4 Compute Transition Events

4.2.4.1 Compute Creation Events: If det(L) > 0 (or equivalently, the
Gaussian curvature of Is is positive), the osculating quadric (Eq. (11)) is an
elliptic paraboloid, and the transition point has elliptic type. See Fig. 4(a).

For an upward elliptic type and offset surfaces deforming forward, or for a
downward elliptic type and offset surfaces deforming backward, a creation
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event is occurring, i.e., an entirely new intersection loop is created from noth-
ing. The following algorithm computes the intersection loop at the time devi-
ation δt from the transition point.

Algorithm 2 Compute Ellipse Contour for a Creation Event

(1) Put directions (1, 0), (0, 1), (−1, 0) into the ordered list of directions V .
(2) Apply Algorithm. 1 to transform V to a ordered list of uniform samples

in TSIs.
(3) Except the first and the last ones, copy and negate in order all elements,

in V, and append to itself.
(4) Map V to a ordered list of samples in R

4
{s,ŝ,t} (cf. Observation 1).

4.2.4.2 Compute Annihilation Events: At an upward elliptic transi-
tion point when offset surfaces deform backward (in time), or at a downward
elliptic transition point when offset surfaces deforming forward, there is an an-
nihilation event happening, i.e. an intersection loop collapses and disappears.
See Fig. 4(a). The key issue here is to choose the right current intersection
loop to annihilate. If there is currently only one intersection loop, annihi-
late it. Otherwise, we use an “evolve-to-annihilate” strategy as illustrated in
Fig. 5. First, evolve all intersection loops at time t1 to the time t′1 (i.e., the
contour position used for the pre-computation of the corresponding creation
event). Then, using the inclusion test [30], find the one that the critical point
p identifies to annihilate.

Fig. 5 illustrates why this “evolve-to-annihilate” strategy is necessary in the
simpler scenario of dynamic curve/curve intersection. Given the type of the
elliptic critical point at p, we are sure that when deforming from the current
time t1 to next sampling point of time t2, there must be a pair of intersection
points to annihilate. However, had the inclusion test been preformed at the
current time t1, the right side pair of intersection points (colored in cyan)
would be wrongly reported to be surrounding the considered critical point p in
the corresponding tangent space (tangent line for the curve/curve intersection
case) and thus would wrongly selected to annihilate. This error is due to the
fact that at t1, the osculating paraboloid is not a good approximation to the
local shape at p, and can be avoided if the inclusion test is applied at time
t′1 where the approximation is quite good and consequently the left side pair
of intersection points now surrounds p while the original right side pair has
evolved far away from p.
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Fig. 5. Evolve to Annihilate
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Fig. 6. Split/Merge

4.2.4.3 Compute Switch Events: If det(L) < 0 (or equivalently, the
Gaussian curvature of Is is negative), the osculating quadric (Eq. (11)) is
a hyperbolic paraboloid, and the transition point has hyperbolic type. See
Fig. 4(b).

Deforming across a hyperbolic transition point is a quite different situation
from an elliptic point inasmuch as there is a switch of two pairs of hyperbolic-
like segments (cf. Fig. 3 in the euclidean space, and Fig. 4 of Is): 2 local
segments approach each other, say, from above the transition point p , touch
at p, and then swap and depart into another two local segments below p. If
the approaching pair of segments is from one intersection loop (Fig. 6), we
have a split event; and if it is from 2 intersection loops (Fig. 6 in reverse
order), we have a merge event. Each segment is a height contour of the local
shape approximated by the osculating hyperbolic paraboloid. The following
algorithm computes one pair of such height contours.

Algorithm 3 Compute Hyperbolic Contours for a Switch Event

(1) Put directions u1 +(u2−u1)∗λ, u1 +u2, u2 +(u1−u2)∗λ into the ordered
list of directions V.

(2) Invoke Algorithm 1 to transform V to an ordered list of uniform samples
in TSIs.

(3) In order, copy and negate all elements into another list V ′.
(4) Map V to an ordered list of samples in R

4
{s,ŝ,t} (cf. Observation 1). Do

the same for V ′.

In the algorithm, u1 and u2 are the two asymptotic directions, which can be
solved (for u) from the equation II(u, u) = 0 using the second fundamental
form in Eq. (10). The algorithm also uses some coefficient λ that is close to
yet less than 1.0 so that neither of the two asymptotic direction u1 and u2 are
sampled, because, after all, the projection of any non-zero contour can intersect
neither of the two asymptotic direction where II(u1, u1) = II(u1, u1) = 0 (cf.
Eq. (11)). The other pair of contours, with the opposite height value, can be
sampled similarly, with one of the asymptotic directions reversed.
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Fig. 7. A split event of 2 deforming torus-like surfaces

Based on the deforming direction we can determine which of the 2 princi-
pal curvature directions is the approaching direction, and which is the de-
parting direction. Then the approaching pair of segments of current inter-
section curves is the one that is closest to the considered transition point
along the approaching direction. Using Algorithm 3, the switch event can be
computed by cutting the two approach segments, evolving the rest across,
say upward, p, and then pasting the other pair of contours to the depart-
ing pair of segments (Illustrated Fig. 6). Finally, Fig. 7 gives an example of
split event of two deforming torus-like surfaces. The images in Fig. 8 provide
several snapshots showing the topological changes which occur in the inter-
section curves when deforming two initially flat surfaces. Fig. 8(2) shows the
randomly chosen generalized offset vector field for one surface used in gener-
ating the sequence. Notice that split events and merge events in the images
are classified according to, respectively, the split and merge of intersection
curves rather than the regions surrounded by them. For demo videos, see
http://www.cs.utah.edu/∼xchen/papers/more.html

5 Conclusion

In this paper, we have applied a mathematical framework provided by singu-
larity theory to develop algorithms for continuously and robustly tracking the
intersection curves of two generically deforming surfaces, on the assumption
that both the base surfaces and the deforming vectors have piecewise rational
representation. The core idea is to divide the process into two steps depend-
ing on when transition points occur. Away from any transition points, the
intersection curves evolve without any structural change. We found a simple
and robust method which constructs an evolution vector field directly in the
Euclidean space R

3 and evolves the intersection curves accordingly. A method
is developed for identifying transition points and following topological changes
in the intersection curves by introducing an implicit 2-manifold I, formed by
the union of intersection curves in an augmented parameter space. The tran-
sition points are identified as the points on I where the tangent spaces are
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(9) a loop annihilated (10) a split event (11) another annihilation

(6) no transition event (7) a merge event (8) no transition event

(3) 4 loops created (4) 2 merge events (5) a split event

(1) initial flat surfaces (2) 1st surface offset vector

Fig. 8. Series of transitions for intersection curves of deforming surfaces
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orthogonal to t-axis, and the topological change of the intersection curves is
subsequently computed by 2nd order differential geometric computations on
I.

Singularity theory, on which this approach is based, assumes the transition
points are generic; that is, they are isolated and satisfy robustness and stability
conditions. Thus, a plane and a cylinder whose axis is parallel to the plane
touch non-generically in a line of contact points before evolving into a well
defined intersection curve. Cases such as this are not covered by the presented
approach.

There are also further transitions which can occur for deforming surfaces,
including the surface developing singularities, self-intersections, and triple in-
tersection points. We are now developing a similar formulation for tracking
the intersection curve end points that correspond to surface boundaries, and
for tracking triple intersection points.
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