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Introduction

A classical result of Arnold and Brieskorn [Bk], [Bk2] states that the complement
of the discriminant of the versal unfolding of a simple hypersurface singularity is a
K(π, 1). Deligne [Dg] showed this result could be placed in the general framework
by proving that the complement of an arrangement of reflecting hyperplanes for a
Coxeter group is again a K(π, 1) (and more generally for simplicial arrangements).
A discriminant complement for a simple hypersurface singularity can be obtained
as the quotient of the complement of such a hyperplane arrangement by the free
action of a finite group, and hence is again is a K(π, 1).

What the discriminants and Coxeter hyperplane arrangements have in common
is that they are free divisors. This notion was introduced by Saito [Sa], motivated by
his discovery that the discriminants for the versal unfoldings of isolated hypersurface
singularities are always free divisors. By contrast, Knörrer [Ko] found an isolated
complete intersection singularity, for which the complement of the discriminant of
the versal unfolding is not a K(π, 1) (although it is again a free divisor by a result
of Looijenga [L]).

This leads to an intriguing question about when a free divisor has a complement
which is a K(π, 1). This remains unsettled for the discriminants of versal unfold-
ings of isolated hypersurface singularities; this is the classical “K(π, 1)-Problem”.
Also, for hyperplane arrangements, there are other families such as arrangements
arising from Shephard groups which by Orlik-Solomon [OS] satisfy both properties;
however, it remains open whether the conjecture of Saito is true that every free
arrangement has complement which is a K(π, 1). A survey of these results on ar-
rangements can be found in the book of Orlik-Terao [OT]. Except for isolated curve
singularities in C2 (and the total space for their equisingular deformations), there
are no other known examples of free divisors whose complements are K(π, 1)’s.
While neither K(π, 1)-problem has been settled, numerous other classes of free
divisors have been discovered so this question continues to arise in new contexts.

In this paper, we define a large class of free divisors whose complements are
K(π, 1)’s by using the results obtained in [DP1]. These free divisors are “deter-
minantal arrangements”, which are analogous to hyperplane arrangements except
that we replace a configuration of hyperplanes by a configuration of determinan-
tal varieties (and the defining equation is a product of determinants rather than a
product of linear factors).

(1) Partially supported by the National Science Foundation grant DMS-0706941.
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These varieties arise as the “exceptional orbit varieties” for representations of
solvable linear algebraic groups which are “Block Representations” in the sense of
[DP1]; and in Theorem 3.1 we show that their complements are always K(π, 1)’s,
where π is the extension of a finitely generated free abelian group by a finite group.
More generally we show that for a weaker notion of “nonreduced Block Repre-
sentation”, the exceptional orbit varieties are weaker free* divisors; however their
complements are still K(π, 1)’s. From this we deduce in Theorem 3.2 that the
Milnor fibers of these exceptional orbit varieties are again K(π, 1)’s.

We exhibit in Theorem 3.4 a number of families of such “determinantal arrange-
ments”in spaces of symmetric, skew-symmetric and general square matrices and
(m− 1)×m–matrices which are free divisors (or free* divisors) with complements
K(π, 1)’s. We note that the individual determinant varieties in these spaces are nei-
ther free divisors nor are their complements K(π, 1)’s. However, the determinant
variety can be placed in a larger geometric configuration of determinantal varieties
which together form a free divisor whose complement is a K(π, 1).

For these results we use special representations of solvable algebraic groups in-
volved in various forms of Cholesky–type factorizations or modified Cholesky–type
factorizations for symmetric, skew-symmetric and general square complex matrices,
and m × (m + 1) general matrices. We describe these factorizations in §1. We go
on to specifically show in these cases π ≃ Zk where k is the rank of the correspond-
ing solvable groups (Theorem 3.4), so the complements are homotopy equivalent
to k–tori. We further deduce that the Milnor fibers for these cases are homotopy
equivalent to (k − 1)–tori. Furthermore, in Theorem 4.1 and Corollary 4.3, we are
able to find explicit generators for the complex cohomology of the complement and
of the Minor fibers using forms obtained from the basic relative invariants for the
group actions, using results from the theory of prehomogeneous spaces due to Sato-
Kimura [SK]. We deduce that the Gauss-Manin systems for these determinantal
arrangements are trivial. The simple form of these results contrasts with the more
difficult situation of linear free divisors for reductive groups considered by Granger,
Mond et al [GMNS]

These determinantal arrangements are also used in [DP2] for determining the
vanishing topology of more general matrix singularities based on the various deter-
minantal varieties.

The authors are especially grateful to Shrawan Kumar for his comments and
references.

1. Cholesky Factorizations, Modified Cholesky Factorizations, and

Solvable Group Representations

In this section we begin by explaining the interest in determinantal arrange-
ments which arises from various forms of Cholesky factorization. Traditionally, it
is well–known that certain matrices can be put in normal forms after multiplica-
tion by appropriate matrices. The basic example is for symmetric matrices, where
a nonsingular symmetric matrix A can be diagonalized by composing it with an
appropriate invertible matrix B to obtain B · A · BT . The choice of B is highly
nonunique. For real matrices, Cholesky factorization gives a unique choice for B
provided A satisfies certain determinantal conditions.
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More generally, by “Cholesky factorization” we mean a general collection of
results for factoring real matrices into products of upper and lower triangular ma-
trices. These factorizations are used to simplify the solution of certain problems in
applied linear algebra.

We recall the three fundamental cases (see [Dm] and [BBW]). For them, we
let A = (aij) denote an m ×m real matrix which may be symmetric, general, or

skew-symmetric. We let A(k) denote the k × k upper left-hand corner submatrix.

Theorem 1.1 (Forms of Cholesky–Type Factorization).

(1) Classical Cholesky factorization: If A is a positive–definite symmetric
matrix with det(A(k)) 6= 0 for k = 1, . . . ,m, then there exists a unique lower
triangular matrix with positive diagonal entries B so that A = B ·BT .

(2) Classical LU decomposition: If A is a general matrix with det(A(k)) 6= 0
for k = 1, . . . ,m, then there exists a unique lower triangular matrix B and
upper triangular matrix C with diagonal entries = 1 so that A = B · C.

(3) Skew-symmetric Cholesky factorization (see e.g. [BBW]): If A is a skew-
symmetric matrix for m = 2ℓ with det(A(2k)) 6= 0 for k = 1, . . . , ℓ, then
there exists a unique lower block triangular matrix B with 2 × 2–diagonal
blocks of the form a) in (1.1) so that A = B ·J ·BT , for J the block diagonal
2ℓ × 2ℓ skew-symmetric matrix with 2 × 2–diagonal blocks of the form b)
in (1.1). For m = 2ℓ+ 1, then there is again a unique factorization except
now B has an additional entry of 1 in the last diagonal position, and J is
replaced by J ′ which has J as the upper left corner 2ℓ× 2ℓ submatrix, with
remaining entries = 0.

(1.1) a)

(

r 0
0 ±r

)

, r > 0 and b)

(

0 −1
1 0

)

We note that in each case the polynomial in the entries of A,
∏

det(A(k)) over
1 ≤ k ≤ m (with k even in the skew-symmetric case), defines a real variety off which
there is the appropriate Cholesky factorization defined. This real variety is defined
on a space of real matrices and can be viewed as a real determinantal arrange-
ment formed from the real varieties defined by the individual det(A(k)). We turn
to the corresponding complex situation and identify such varieties as examples of
determinantal varieties which arise as “exceptional orbit varieties”of solvable group
actions. This perspective leads to a more general understanding of the determinan-
tal varieties associated to Cholesky factorization.

Cholesky Factorizations and Determinantal Arrangements. We begin with
the notion of determinantal varieties and determinantal arrangements on a complex
vector space V .

Definition 1.2. A variety V ⊂ V is a determinantal variety if V has a defining
equation p = det(B) where B = (bi,j) is a square matrix whose entries are linear
functions on V . Then, X ⊂ V is a determinantal arrangement if X has defining
equation p =

∏

pi where each pi is a defining equation for a determinantal variety
Vi. Then, X = ∪iVi

In the simplest case where the determinants are 1 × 1 determinants, then we
obtain a central hyperplane arrangement.
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Remark 1.3. In the definitions of determinantal variety and determinantal ar-
rangements we do not require that the defining equations be reduced. In fact, even
for certain of the Cholesky–type factorizations above this need not be true.

We now consider the spaces of m × m complex matrices which will either be
symmetric, general, or skew-symmetric (with m even). In the complex case there
are the following analogues of Cholesky factorization (see [DP1] and [P]).

Theorem 1.4 (Complex Cholesky–Type Factorization).

(1) Complex Cholesky factorization: If A is a complex symmetric matrix with
det(A(k)) 6= 0 for k = 1, . . . ,m, then there exists a lower triangular matrix
B, which is unique up to multiplication by a diagonal matrix with diagonal
entries ±1, so that A = B ·BT .

(2) Complex LU decomposition: If A is a general complex matrix with det(A(k)) 6=
0 for k = 1, . . . ,m, then there exists a unique lower triangular matrix B
and a unique upper triangular matrix C which has diagonal entries = 1 so
that A = B · C.

(3) Complex Skew-symmetric Cholesky factorization : If A is a skew-symmetric
matrix for m = 2ℓ with det(A(2k)) 6= 0 for k = 1, . . . , ℓ, then there exists a
lower block triangular matrix B having the same form as in (3) of Theorem
1.1 but with complex entries of same signs in each 2×2 diagonal block a) of
(1.1) (i.e. = r ·I), so that A = B ·J ·BT , for J the 2ℓ×2ℓ skew-symmetric
matrix as in (3) of Theorem 1.1. Then, B is unique up to multiplication by
block diagonal matrices with a 2 × 2 diagonal blocks = ±I. There is also a
factorization for the case m = 2ℓ + 1 analogous to that in (3) in Theorem
1.1, with again with complex entries of same signs in each 2 × 2 diagonal
block.

The polynomials
∏

det(A(k)) over 1 ≤ k ≤ m (with k even in the skew-symmetric
case), define varieties which are determinantal arrangements. However, these vari-
eties have differing properties when viewed from the perspective of their being free
divisors. While they are free divisors in the symmetric case, they are a weaker form
of free* divisor (see [D]) for the general and skew-symmetric cases. The stronger
properties of free divisors discovered in [DM] led to a search for a modification of
the notion of Cholesky factorization for general m ×m matrices. This further ex-
tends to the space of (m−1)×m general matrices. In each case there is a modified
form of Cholesky–type factorization (see [DP1] and [P]) which we consider next.

For an m ×m matrix A, we let Â denote the m × (m − 1) matrix obtained by

deleting the first column of A. If instead A is an (m−1)×m matrix, we let Â denote
the (m− 1)× (m− 1) matrix obtained by deleting the first column of A. In either

case, we let Â(k) denote the k × k upper left submatrix of Â, for 1 ≤ k ≤ m − 1.
Then a modified form of Cholesky factorization is given by the following (see[DP1]
and [P]).

Theorem 1.5 (Modified Cholesky–Type Factorization).

(1) Modified LU decomposition: If A is a general complex m×m matrix with

det(A(k)) 6= 0 for k = 1, . . . ,m and det(Â(k)) 6= 0 for k = 1, . . . ,m − 1,
then there exists a unique lower triangular matrix B and a unique upper
triangular matrix C, which has first diagonal entry = 1, and remaining first
row entries = 0 so that A = B ·K ·C, where K has the form of a) in (1.2).
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(2) Modified Cholesky factorization for (m − 1) × m matrices: If A is an
(m − 1) × m complex matrix with det(A(k)) 6= 0 for k = 1, . . . ,m − 1,

det(Â(k)) 6= 0 for k = 1, . . . ,m − 1, then there exists a unique (m − 1) ×
(m − 1) lower triangular matrix B and a unique m ×m matrix C having
the same form as in (1), so that A = B ·K ′ · C, where K ′ has the form of
b) in (1.2).

(1.2) a)















1 1 0 0 0
0 1 1 0 0

0 0
. . . 1 0

0 0 0 1 1
0 0 0 0 1















and b)















1 1 0 0 0 0
0 1 1 0 0 0

0 0
. . . 1 0 0

0 0 0 1 1 0
0 0 0 0 1 1















This factorization yields unexpected forms and even one for non–square matrices.
The corresponding determinantal arrangements are defined by

∏

det(A(k)) ·
∏

det(Â(j)) = 0

where the products are over 1 ≤ k ≤ m, 1 ≤ j ≤ m − 1 for case (1) and over
1 ≤ k ≤ m−1 and 1 ≤ j ≤ m−1 for case (2). In the next section, we explain how as
a consequence of [DP1] and [P], these determinantal arrangements are free divisors.
As we will explain, these are special cases of a general result which constructs
such determinantal arrangements from representations of solvable linear algebraic
groups. In fact there are many other families of determinantal arrangements which
similarly arise (see [DP1]). This representation will then allow us to explicitly
describe the complements to the determinantal arrangements and give criteria that
they are K(π, 1)’s.

2. Block Representations for Solvable Groups

All of the examples of Cholesky–type factorization given in §1 can be viewed as
statements about open orbits for representations of solvable linear algebraic groups.
For example, for the case of symmetric matrices, there is the representation of the
Borel subgroup of m×m lower triangular matrices Bm acting on the space of m×m
symmetric matrices Symm given by

(2.1) C · S = C S CT for C ∈ Bm and S ∈ Symm.

However, not all such representations have the desired properties. We consider a
special class of finite dimensional (complex) regular representations ρ : G→ GL(V )
of solvable linear algebraic groups G (throughout this paper the solvable groups
will always be understood to be connected). Such a representation will be called
an equidimensional representation if dimG = dimV and ker(ρ) is finite. We will
specifically be interested in the case where G has an open orbit, which is then
Zariski open. We refer to the complement, which consists of the orbits of positive
codimension, as the exceptional orbit variety E ⊂ V .

Mond first observed that in this situation it may be possible to apply Saito’s
criterion to conclude that E is a free divisor. This has led to a new class of “linear
free divisors”. The question is when does Saito’s criterion apply. In the case
of reductive groups G, Mond and Buchweitz [BM] used quivers of finite type to
discover a large collection of linear free divisors. We consider instead the situation
for solvable algebraic groups.
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Remark 2.1. We note that such representations with a Zariski open orbit were
studied many years ago by Sato and Kimura who called them prehomogeneous vector
spaces except they did not require the representations to be equidimensional. Also,
they studied them from the perspective of harmonic analysis (see [SK] and [Ki]).

We consider for a representation ρ : G → GL(V ) the natural commutative
diagram of (Lie) group and Lie algebra homomorphisms (see [DP1]).

Exponential Diagram for a Representation

(2.2)

g
ρ̃

−−−−→ λ(V )
ĩ

−−−−→ m · θ(V )

exp





y

exp





y

exp





y

G
ρ

−−−−→ GL(V )
i

−−−−→ Diff(V, 0)

Here Diff(V, 0) denotes the group of germs of diffeomorphisms; θ(V ) denotes the
germs of holomorphic vector fields on V, 0, but with Lie bracket the negative of the
usual Lie bracket; and ĩ(A) is the vector field which at v ∈ V has the value A · v.

For an equidimensional representation, the composition ĩ ◦ ρ̃ is a Lie algebra
isomorphism onto its image. The image of a vector v ∈ g will be denoted by ξv and
called a representation vector field associated to v. For a basis {vi, i = 1, . . . , N} of
g, we obtain N representation vector fields {ξvi

}.
For a basis {wj , j = 1, . . . , N} of V , we can represent

(2.3) ξvi
=

n
∑

j=1

aj,iwj i = 1, . . . , N

where ai,j ∈ OV,0. We refer to the matrix A = (ai,j) as the coefficient matrix. Its
columns are the coefficient functions for the vector fields. For an equidimensional
representation with open orbit, the exceptional orbit variety is defined (possibly
with nonreduced structure) by the determinant det(A), which we refer to as the
coefficient determinant. As Mond observed, by Saito’s Criterion, if the coefficient
determinant is a reduced defining equation for E , then E is a free divisor which is
called a linear free divisor. We shall use the Lie algebra structure for the case of
solvable algebraic groups to obtain linear free divisors.

There is a special class of representations of solvable algebraic groups which we
introduced in [DP1].

Definition 2.2. An equidimensional representation V of a connected linear alge-
braic group G will be called a block representation if:

i) there exists a sequence of G-invariant subspaces

V = Wk ⊃Wk−1 ⊃ · · · ⊃W1 ⊃W0 = (0);

ii) for the induced representation ρj : G → GL(V/Wj), we let Kj = ker(ρj),
then dimKj = dimWj for all j and the equidimensional action of Kj/Kj−1

on Wj/Wj−1 has a relatively open orbit for each j;
iii) the relative coefficient determinants pj for the representations of Kj/Kj−1

on Wj/Wj−1 are all reduced and relatively prime in OV,0.

Remark 2.3. If in the preceding definition, both i) and ii) hold, with the relative
coefficient determinants non-zero but possibly nonreduced or not relatively prime
in pairs, then we say that it is a nonreduced block representation.
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The two terms “relative coefficient determinants”and “relatively open orbits”are
explained in more detail in [DP1]. For our purposes here, we can briefly explain
their meaning by considering the coefficient matrix. We choose a basis for V and
g formed from bases for the successive Wj/Wj−1 and kj/kj−1, j = k, k − 1, . . . 1,
where kj is the Lie algebra of Kj. We obtain a block triangular matrix coefficient
matrix for the corresponding representation vector fields.

Block Triangular Form:

(2.4)

















Dk 0 0 0 0
∗ Dk−1 0 0 0

∗ ∗
. . . 0 0

∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ D1

















The “relative coefficient determinants”are pj = det(Dj). These are polynomials
defined on V even though they are for the representation Wj/Wj−1. Also, the
condition for “relative open orbits” is equivalent to pj not being identically 0 (on
V ).

Then, block representations give rise to free divisors, and in the nonreduced case
to free* divisors (see [DP1] or [P]).

Theorem 2.4. Let ρ : G → GL(V ) be a block representation of a solvable linear
algebraic group G, with relative coefficient determinants pj , j = 1, . . . , k. Then, the
“exceptional orbit variety” E , 0 ⊂ V, 0 is a linear free divisor with reduced defining

equation
∏k

j=1 pj = 0.

If instead ρ : G → GL(V ) is a nonreduced block representation, then E , 0 ⊂ V, 0

is a linear free* divisor and
∏k

j=1 pj = 0 is a nonreduced defining equation for

(E , 0).

In [DP1] it is shown that all of the determinantal arrangements arising from
Cholesky-type factorizations in §1 are in fact the exceptional orbit varieties for
the equidimensional representations of appropriate solvable linear algebraic groups.
There is then the following consequence for these determinantal arrangements

Theorem 2.5.

i) The determinantal arrangements arising from the cases of Cholesky–type
factorization for complex symmetric matrices and modified Cholesky–type
factorization for complex general m × m and (m − 1) × m matrices are
exceptional orbit varieties for the block representations of the corresponding
solvable algebraic groups. As such they are free divisors.

ii) The determinantal arrangements arising from the Cholesky–type factoriza-
tion for complex general m×m matrices, and m×m skew-symmetric ma-
trices (m even) are exceptional orbit varieties for the nonreduced block rep-
resentations of the corresponding solvable algebraic groups. As such they
are free* divisors.

Proof. We list in Table 1, each type of complex (modified) Cholesky–type factor-
ization, the space of complex matrices, and the solvable group and representation
which define the factorization. For this table we use the notation that the spaces
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Cholesky–type Matrix Space Solvable Group Representation
Factorization
symmetric matrices Symm Bm B · A = BABT

general matrices Mm,m Bm ×Nm (B,C) ·A = BAC−1

skew-symmetric Skm Dm B · A = BABT

Modified Cholesky
–type Factorization
general m×m Mm,m Bm × Cm (B,C) ·A = BAC−1

general (m− 1) ×m Mm−1,m Bm−1 × Cm (B,C) ·A = BAC−1

Table 1. Solvable groups and (nonreduced) Block representa-
tions for (modified) Cholesky–type Factorization.

of complex m×m matrices are denoted by: Symm for symmetric matrices, Mm,m

for general m × m matrices, and Skm for skew–symmetric matrices. We also let
Mm−1,m denote the space of complex m− 1 ×m matrices. For the groups we use
the notation: Bm for the Borel group of m×m lower triangular matrices; Nm for
the nilpotent group of m ×m upper triangular matrices with 1’s on the diagonal;
for m = 2ℓ, Dm denotes the group of lower block triangular matrices, with 2 × 2
diagonal blocks of the form a) in (1.1) with complex entries of the same sign r 6= 0
(i.e. r · I); while for m = 2ℓ + 1, Dm denotes the group of lower block triangular
matrices with the first ℓ (2 × 2)-diagonal blocks as above and the last diagonal
element = 1; and Cm is subgroup of the m ×m upper triangular matrices with 1
in the first entry and other entries in the first row = 0.

These are each either block or nonreduced block representations, as is shown in
[DP1], so that Theorem 2.4 applies. �

Remark 2.6. For the case of skew-symmetric matrices, we have not found a mod-
ified form of Cholesky factorization for which the resulting determinantal arrange-
ment is a free divisor. However, by extending the results to representations of
nonlinear solvable infinite dimensional Lie algebras, we have found a free divisor
which is the analogue of the exceptional orbit variety (again see [DP1] and [P]).

3. Complements of Exceptional Orbit Varieties for Block

Representations of Solvable Groups

We next see that for block (or nonreduced block) representations, not only are
the exceptional orbit varieties free divisors (resp. free* divisors), but they also share
the additional property of having a complement which is a K(π, 1).

Theorem 3.1. Let ρ : G → GL(V ) be a block representation of a solvable linear
algebraic group G whose rank is m. Then, the complement of the exceptional orbit
variety, V \E, is a K(π, 1) where π is isomorphic to an extension of Zm by the finite
isotropy subgroup for a generic v0 ∈ V .

If instead ρ : G → GL(V ) is a nonreduced block representation, then although
E , 0 ⊂ V, 0 is only a linear free* divisor, the complement V \E is still a K(π, 1) with
π as above.

Proof. Let U denote the Zariski open orbit of G. We choose v0 ∈ U . The map
G → U sending g 7→ g · v0 is surjective, as is the corresponding derivative map.
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By the equidimensionality, the isotropy subgroup H ⊂ G for v0 is a 0-dimensional
algebraic group, and hence finite. By standard results for Lie groups, the induced
mapping G/H → U sending gH 7→ g · v0 is a diffeomorphism. As G is connected,
p : G → G/H is a fiber bundle with finite fiber and connected total space; hence,
it is a finite covering space.

Also, by the structure theorem for connected solvable groups, G is the extension
of its maximal torus (C∗)m by its unipotent radical N . It is a standard result
for algebraic groups that the nilpotent group N is a Euclidean group, i.e. the
underlying manifold is diffeomorphic to some Ck (for example, by Corollary 4.8 in
[Bo], it is a subgroup of some upper triangular group in SLn(C), and then Corollary
1.134 and Theorem 1.127 of [Kn] yield the result). Hence, G has the homotopy type
of its maximal torus, which is a K(Zm, 1), where m = rank (G).

Hence, a simple argument using the homotopy exact sequence for a fibration
shows that G/H is also a K(π, 1) and by basic results on covering spaces, H ≃
π1(G/H, ē)/p∗(π1(G, e)) (for ē = e ·H). Thus, G/H is a K(π, 1) with π isomorphic
to the extension of Zm by H . �

As a consequence we are able to describe the Milnor fiber of the nonisolated
hypersurface singularity (E , 0).

Theorem 3.2. Let ρ : G → GL(V ) be a (nonreduced) block representation of a
solvable linear algebraic group G whose rank is m, with E the exceptional orbit
variety. Then, the Milnor fiber of the nonisolated hypersurface singularity (E , 0) is
a K(π, 1), where π satisfies

(3.1) 0 −−−−→ π −−−−→ π1(V \E) −−−−→ Z −−−−→ 0

with π1(V \E) isomorphic to an extension of Zm by the finite isotropy subgroup for
a generic v0 ∈ V .

Proof. First, we observe that if h is the reduced homogeneous defining equation for
E , then h : V \E → C∗ is a global fibration. This follows using the C∗–action. If
h has degree d, we can find an open neighborhood U of 1 in C

∗, invariant under
inverses, so that the function f(z) = zd has a well-defined branch of the inverse
d–th root function, which we denote by θ. For w0 ∈ C∗, there is a neighborhood
W of w0 obtained by applying the C∗–action to U , z 7→ z · w0.

Then, a local trivialization is given by

ψ : W × h−1(w0) → h−1(W )(3.2)

(w, (z1, . . . , zn)) 7→ θ(z) · (z1, . . . , zn)

where z = w/w0. Then by the homogeneity of h,

h(θ(z) · z1, . . . , θ(z) · zn) = θ(z)dh(z1, . . . , zn) = z · w0 = w

As C
∗ is connected all fibers of h : V \E → C

∗ are diffeomorphic. We next show
that the Milnor fiber of (E , 0) is diffeomorphic to a fiber of this fibration. Given
ε > 0 and δ > 0 sufficiently small so that h−1(Bδ\{0})∩Bε is the Milnor fibration
of (E , 0) and if w ∈ Bδ\{0}, then the fibers h−1(w) are tranverse to the ε–sphere
S2n−1

ε about 0. We further claim that by the C∗–action, the fibers h−1(w), for
w ∈ Bδ\{0} are transverse to all spheres S2n−1

R for R > ε. If z ∈ h−1(w) with
‖z‖ = R > ε, we let a = ε

R
and z′ = a · z. Then,

h(z′) = h(a · z) = ad h(z) =
( ε

R

)d

· w = w′ .



10 JAMES DAMON AND BRIAN PIKE

Thus, h(z′) ∈ Bδ\{0} and ‖z′‖ = a · ‖z‖ = ε. Multiplication by a sends S2n−1
R

to S2n−1
ε and h−1(w) to h−1(w′). Since h−1(w′) is transverse to S2n−1

ε at z′,
and transversality is preserved under diffeomorphisms, we conclude that h−1(w) is
transverse to S2n−1

R at z.
Hence, on the fibers X = h−1(w)\Bε, the function g(z) = ‖z‖ has no critical

points. It then follows using Morse theory that h−1(w) is diffeomorphic to the
Milnor fiber h−1(w) ∩Bε as claimed.

Finally, it is sufficient to show that a fiber F of the fibration h : V \E → C∗ is a
K(π, 1) with π satisfying (3.1). As F is diffeomorphic to the Milnor fiber of (E , 0),
we can at least conclude by e.g. the Kato-Matsumoto theorem that they are both
0–connected, i.e. path–connected (in the special case of dimV = 1 it is trivially
true). Next, by the homotopy exact sequence for the fibration, we have

(3.3) πj+1(C
∗) −−−−→ πj(F ) −−−−→ πj(V \E) −−−−→ πj(C

∗) −−−−→ πj−1(F )

If j > 1, then both πj(V \E) = 0, πj+1(C
∗) = 0; hence, πj(F ) = 0 for j > 1. Thus,

F is a K(π, 1). Also, as F is path–connected, then the long exact sequence (3.3)
with j = 1 yields (3.1). �

As a corollary we have an important special case.

Corollary 3.3. Let ρ : G → GL(V ) be a (nonreduced) block representation of a
solvable linear algebraic group G whose rank is m so that the complement of the
exceptional orbit variety E satisfies π1(V \E) ≃ Z

m. Then, V \E is homotopy equiva-
lent to an m–torus, and the Milnor fiber of the nonisolated hypersurface singularity
(E , 0) is homotopy equivalent to an (m− 1)–torus.

Proof. By the hypothesis and Theorem 3.1, V \E is a K(Zm, 1) and hence is ho-
motopy equivalent to the m–torus. Second, by Theorem 3.2, the Milnor fiber is a
K(π, 1) where π is a subgroup of Zm with quotient Z. Thus, π is a free abelian
group and by comparing ranks, π ≃ Zm−1. Thus, the Milnor fiber is homotopy
equivalent to an (m− 1)–torus. �

One example of the usefulness of these theorems is their general applicability to
complements of determinantal arrangements in spaces of matrices corresponding to
Cholesky or modified Cholesky–type factorizations, as well as to other (nonreduced)
block representations given in [DP1] and [DP2].

Determinantal Arrangements whose Complements are K(Zk, 1)’ s.

We return to the determinantal arrangements arising from Cholesky or modified
Cholesky type factorizations that we considered in §1. We have the following general
result for the topology of their complements.

Theorem 3.4. Each of the determinantal arrangements E associated to the com-
plex Cholesky–type factorizations in Theorem 1.4 and the modified Cholesky–type
factorizations in Theorem 1.5 have complements which are K(Zk, 1)’ s, where k
is the rank of the corresponding solvable group in Table 1. Hence, they are homo-
topy equivalent to k–tori; and the Milnor fibers of (E , 0) are homotopy equivalent
to (k − 1)–tori.

For the three families of complex symmetric matrices, and modified Cholesky
factorizations for general complex m×m and (m−1)×mmatrices the corresponding
determinantal arrangements E are free divisors with the preceding properties.
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Proof. As stated in Theorem 2.5, the corresponding determinantal arrangements
for the complex Cholesky and modified Cholesky-type factorizations are the excep-
tional orbit varieties for the corresponding solvable linear algebraic groups given in
Table 1. Then, Theorem 3.1 implies that the complements of the determinantal
arrangements are K(π, 1)’s. Once we have shown that in each case π ≃ Z

k, where
k is the rank of the corresponding solvable group, it will follow by Corollary 3.3
that the complement is homotopy equivalent to a k–torus and the Milnor fiber, to
a (k − 1)–torus. Furthermore, by Theorem 2.5 for the cases of complex symmetric
matrices and the modified Cholesky factorizations, the corresponding exceptional
orbit varieties are free divisors with the preceding properties. It remains to show
in each case that π1(V \E) ≃ Zk where k is the rank of the corresponding solvable
group.

We first consider the determinantal arrangements for the complex Cholesky–type
factorization (see Theorem 1.4). In the case of m×m complex symmetric matrices,
the isotropy group for the identity matrix I is H = (Z/2Z)m consisting of diagonal
matrices with entries ±1 as the diagonal entries. We claim that the extension of
Zm by H is again isomorphic to Zm.

To see this, we consider for a 1 ≤ j ≤ m a path γj(t) from [0, 1] to the Borel
subgroup Bm of lower triangle matrices. It consists of diagonal matrices γj(t) = Bt

with entries 1 in all positions except for the j–th which is eπit. Then Bt · B
T
t is

diagonal with all diagonal entries 1 except in the j–th position, where it is e2πit.
This is a closed path αj in the complement of the determinantal arrangement.
Thus, the corresponding path in the Borel subgroup Bm is a lift of αj . Also, a lift
of αj ∗ αj is the path βj in Bm of diagonal matrices with j–th entry e2πit which
defines the j–th generator of Zm, the fundamental group for Bm, and hence G.

Second, the covering transformation hj of G corresponding to αj is given by
multiplication by the diagonal matrix Hj , whose (i, i)–entry is 1 if i 6= j and −1 if
i = j. These generate the group of covering transformations.

Third, because paths αi(t) and αj(t) with i 6= j are in different diagonal posi-
tions, the path classes αj ∗ αi and αi ∗ αj are homotopic. Hence, the classes in
π1(V \E , I) defined by {αi(t) : 1 ≤ i ≤ m} commute; they generate the group of
covering transformations; and their squares generate π1(G, I). Thus, they generate
π1(V \E , I), which is then a free abelian group generated by the αi.

Second, for general m×m complex matrices, by the uniqueness of the complex
LU-decomposition, the isotropy group is the trivial group. Hence, π ≃ Zm.

Third, for m×m skew-symmetric matrices with m = 2ℓ, the isotropy subgroup
H of the matrix J in (3) is H ≃ (Z/2Z)ℓ. The generator of the j–th factor is given
by the block diagonal matrix with 2 × 2 blocks which are the identity except for
the j–th block which can be the 2×2 diagonal matrix ±I. An analogous argument
as for the symmetric case shows that the extension of Zℓ by H is again isomorphic
to Zℓ. For m = 2ℓ + 1, a similar argument likewise shows that H ≃ (Z/2Z)ℓ and
the extension of Zℓ by H is again isomorphic to Zℓ.

Fourth, for both types of modified Cholesky-type factorization the factorization
is unique. Hence, in both cases the isotropy subgroups are trivial. Hence, again
π ≃ Zk, where k is the rank of the corresponding solvable group in Table 1. It is
k = 2m−1 for the m×m general case and k = 2m−2 for the (m−1)×m case. �

Example 3.5. We illustate the preceding with the simplest examples. We consider
the lowest dimensional representations of each type. The matrices in each space
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Matrix Space Group Free/Free* E V \E Milnor
Fiber

Cholesky–type
Factorization
Sym2 B2 Free x (xz − y2) T 2 S1

M2,2 B2 ×N2 Free* x (xw − yz) T 2 S1

Sk4 D4 Free* x (xw − yv + zu) T 2 S1

Modified
Cholesky–type
M2,2 B2 × C2 Free xy (xw − yz) T 3 T 2

M2,3 B2 × C3 Free xy (xv − yu) T 4 T 3

·(yw − zv)
Sk4 nonlinear Free xyu (yv − zu)

·(xw − yv + zu)

Table 2. Simplest examples of representations for (modified)
Cholesky–type factorizations, with equations defining exceptional
orbit varieties E . Listed is the homotopy type of the complement
V \E and the Milnor fiber of E . Note that because the nonlinear
group acting on Sk4 is infinite dimensional, we cannot apply the
preceding results to determine the topology of the complement nor
the Milnor fiber.

are given by

(3.4) a)

(

x y
y z

)

b)

(

x y
z w

)

c)

(

x y z
u v w

)

d)









0 x y z
−x 0 u v
−y −u 0 w
−z −v −w 0









Then, Table 2 lists the corresponding representation and the topological type of
both the complement and the Milnor fiber of the exceptional orbit varieties. One
point to observe is that the equations xz−y2 on C3, xw−yz on C4, and xw−yv+zu
on C6 define Morse singularities at 0. Their Milnor fibers are homotopy equivalent
to respectively S2, S3, and S5; and the complements are homotopy equivalent to
bundles over S1 with these respective fibers. By adding a plane tangent to an
element of each of the cones defined by the equations, the complements and Milnor
fibers become homotopy tori.

4. Generators for the Cohomology of the Milnor Fibers

For the cases of the representations corresponding to both Cholesky-type and
modified Cholesky-type factorizations, we will compute explicit generators for the
cohomology algebras with complex coefficients of both the complement and the
Milnor fiber of the exceptional orbit variety. By Theorem 3.4, it is enough to give
a basis for H1(·,C) for each case.

We will use several facts concerning prehomogeneous spaces due to Sato and
Kimura (see e. g. [Ki] and [SK]). Prehomogeneous spaces are representations V
of complex algebraic Lie groups G which have open orbits. The exceptional orbit
variety E is again the complement of the open orbit. By Theorem 2.9 in [SK],
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the components of E which are hypersurfaces have reduced defining equations fi

which are the basic relative invariants (they generate the multiplicative group of
all relative invariants). fi is a relative invariant if there is a rational character χi

of G so that fi(g · v) = χi(g) · fi(v) for all g ∈ G and v ∈ V . The 1–forms ωi = dfi

fi

are defined on V \E and are the pull-backs of dz
z

via fi. Hence, they are closed and

define 1–dimensional cohomology classes in H1(V \E ,C). By pulling back the ωi

via the inclusion map of the Milnor fiber F →֒ V \E we obtain cohomology classes
ω̃i ∈ H1(F,C). We have the following description of the cohomology algebras.

Theorem 4.1. Let ρ : G → GL(V ) be a (nonreduced) block representation of a
solvable linear algebraic group G whose rank is k. Suppose the complement of the
the exceptional orbit variety E satisfies π1(V \E) ≃ Zk. Then,

i) there are k basic relative invariants fi and H1(V \E ,C) has the basis ωi for
i = 1, . . . k. Hence, the cohomology algebra H∗(V \E ,C) is the free exterior
algebra on these generators;

ii) H1(F,C) is generated by the {ω̃i, i = 1, . . . , k} with a single relation
∑k

i=1 ω̃i =
0. Hence, H∗(F,C) is the free exterior algebra on any subset of k − 1 of
the ω̃i.

Because of the explicit generators and relation for the degree 1 cohomology of
the Milnor fiber, we can draw the following concluson.

Corollary 4.2. For a (nonreduced) block representation as in Theorem 4.1, the
Gauss-Manin connection for the exceptional orbit variety (E , 0) is trivial.

Proof of Corollary 4.2. By Theorem 4.1, the ωi restrict to give global sections of
the cohomology sheaf H1(U,C) = H1(h−1(U),C) for U ⊂ C∗ (and h the reduced
defining equation). Hence, the Gauss–Manin connection for the fibration h : V \E →
C

∗ is trivial for each of these elements, as it is for the single relation
∑

ωi . Since
their restrictions generate the cohomology of the fiber, the Gauss-Manin connection
acts trivially on the entire cohomology. As the inclusion of the Milnor fibration of
the exceptional orbit variety into V \E is a homotopy equivalence of fibrations, the
Gauss Manin connection is also trivial on the Milnor fiber. �

By Theorem 3.4, this theorem applies to all of the representations corresponding
to both Cholesky-type and modified Cholesky-type factorizations.

Corollary 4.3. For each representation ρ : G → GL(V ) corresponding to a
Cholesky or modified Cholesky type factorizations, the conclusions of Theorem 4.1
and Corollary 4.2 apply to the complement of the exceptional orbit variety E, and
to the Milnor fiber and Gauss–Manin connection of (E , 0).

Example 4.4. For the representation of B3 on Sym3, the exceptional orbit variety
Esy
3 is defined using coordinates for a generic matrix

A =





x y z
y w u
z u v





by

x (xw − y2) · det(A) = 0 .



14 JAMES DAMON AND BRIAN PIKE

By Theorem 4.1 and Corollary 4.3, the complex cohomology of the complement
is the exterior algebra

H∗(Sym3\E
sy
3 ; C) ≃ Λ∗

C <
dx

x
,
d(xw − y2)

(xw − y2)
,
d(det(A))

det(A)
>

In addition, the complex cohomology of the Milnor fiber of Esy
3 is isomorphic to the

exterior algebra on any two of the preceding generators.

Proof of Theorem 4.1. First, we consider V \E . For v0 ∈ V \E , the map ϕ : G →
V \E sending g 7→ g ·v0 is a regular covering space map. Hence, the homomorphism
ϕ∗ : π1(G) → π1(V \E) is injective. By the assumption on V \E and the fact that G
is homotopy equivalent to its maximal torus, both are Zk, where k is the rank of G.
Thus, by the Hurewicz theorem and the universal coefficient theorem, we conclude
that ϕ∗ : H1(G,C) → H1(V \E ,C) is injective, and both groups are isomorphic to
Ck; hence, ϕ∗ is an isomorphism. Thus, also ϕ∗ : H1(V \E ,C) ≃ H1(G,C). Hence,
if {f1, . . . , fm} denote the set of basic relative invariants, we shall show that m = k
and that ϕ∗(ωi) for i = 1, . . . , k form a set of generators for H1(G,C).

Consider one fi with its corresponding character χi. Consider a one-parameter
subgroup exp(tw) for w ∈ t, the Lie algebra of a maximal torus T of G. Then, for
any v ∈ V \E ,

(4.1) fi(exp(tw) · v) = χi(exp(tw)) fi(v) .

Since exp : t → T is a Lie group homomorphism, so is χi◦exp. Thus, if {w1, . . . , wk}
is a basis for t, then χi has the following form on T ,

(4.2) χi

(

exp(t(
∑

zℓwℓ))
)

= exp(t(
∑

λ
(i)
ℓ zℓ)) .

Then, for w =
∑

zℓwℓ, substituting (4.2) into (4.1), and differentiating with respect
to t, we obtain

(4.3)
∂fi(exp(tw) · v)

∂t
=

∂ exp(t(
∑

λ
(i)
ℓ zℓ))

∂t
fi(v) .

The LHS of (4.3) computes dfi(ξw(exp(tw) · v)), where ξw is the representation
vector field associated to w. Thus, we obtain

(4.4) dfi(ξw(exp(tw) · v)) = (
∑

λ
(i)
ℓ zℓ) · exp(t(

∑

λ
(i)
ℓ zℓ)) fi(v)

or (4.4) can be rewritten

(4.5)
1

fi

· dfi(ξw)(exp(tw) · v) =
∑

λ
(i)
ℓ zℓ .

Hence,

(4.6) ωi(ξw)(exp(tw) · v)) =

k
∑

ℓ=1

λ
(i)
ℓ zℓ .

By the Lie–Kolchin theorem, we may suppose that G is a subgroup of a Borel
subgroup Br of some GLr(C), and the maximal torus T is a subgroup of the torus
T r = (C∗)r. Thus, we may choose our generators wj = 2πiuj with uj ∈ Cr so that
the γj(t) = exp(t wj) = exp(2πi t uj), 0 ≤ t ≤ 1, each parametrizes an S1 ⊂ T ; and
the corresponding set of fundamental classes for j = 1, . . . , k = rank (G), generate
H1(T,Z). Since T →֒ G is a homotopy equivalence, they also generate H1(G,Z).
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Furthermore, their images in H1(G,C) form a set of generators which are mapped
by ϕ∗ to a set of generators for H1(V \E ,C). These are defined by δi(t) = γi(t) · v0.

Next, we evaluate ωj on them.

(4.7)

∫

δj

ωi =

∫ 1

0

ωi(δ
′

j)(γj(t) · v0) dt =

∫ 1

0

ωi(ξwj
)(exp(t wj) · v0) dt .

Applying (4.6), keeping in mind that for wj , zℓ = 0 for ℓ 6= j, we obtain
∫ 1

0

∑

λ
(i)
ℓ zℓ dt = λ

(i)
j .

Hence,

(4.8)

∫

δj

ωi = λ
(i)
j .

As we vary over the set of basic relative invariants {f1, . . . , fm}, we obtain an m×k

matrix Λ = (λ
(i)
j ) which by (4.2) yields for the characters {χi◦exp : i = 1, . . . ,m}, a

representation of the set of corresponding infinitesimal characters on t with respect
to the dual basis for {w1, . . . , wk}.

First, by the theory of prehomogeneous vector spaces, [Ki, Theorem 2.9], the set
of characters for the basic relative invariants are multiplicatively independent in
the character group X(G) ≃ X(G/[G,G]) ≃ X(T ), for T a maximal torus. This is
a free abelian group of rank k = rank (G) = rank (T ). Hence, m ≤ k.

Second, by [Ki, Proposition 2.12], the characters {χi : i = 1, . . . ,m} generate
X(G1) ≃ X(T/H), where in our case, G1 is the quotient of G by the group gener-
ated by the unipotent radical N of G and the isotropy subgroup of an element v0
in the open orbit. Here H denotes the image of the isotropy subgroup in G/N ≃ T .
As a consequence of G being solvable, there is a torus T in G so composition with
projection onto G/N is an isomorphism. Hence, via this isomorphism, we may
assume H ⊂ T . As H is finite, T/H is a torus of the same dimension and the
map T → T/H induces an isomorphism on the corresponding Lie algebras. Thus,
{χi : i = 1, . . . ,m} generate X(T/H), an abelian group of rank k, so m ≥ k.

Hence, m = k and the {χi} are algebraically independent in X(T/H), which
implies the corresponding infinitesimal characters on t are linearly independent.
This is equivalent to Λ being nonsingular.

Hence, by (4.8), we conclude that the {ωi} form a set of generators forH1(V \E ,C).
Lastly, it remains to show that if F is the Milnor fiber of (E , 0), then the {ω̃i}

form a spanning set for H1(F,C) with single relation
∑k

i=1 ω̃i = 0. By our earlier
arguments, if h is a reduced defining equation for E , we may use F = h−1(1). By

assumption if fi, i = 1, . . . , k are the basic relative invariants, then h =
∏k

i=1 fi is
a reduced defining equation for E .

We let i : F →֒ V \E denote the inclusion, so ω̃i = i∗(ωi). As i∗ : π1(F ) →
π1(V \E) is the inclusion Z

k−1 →֒ Z
k where k = rank of G, by the Hurewicz theorem

and universal coefficient theorem, i∗ : H1(V \E ,C) → H1(F,C) is a surjective map

Ck → Ck−1. We need only identify the one-dimensional kernel. Since h =
∏k

i=1 fi

and F is defined by h = 1, we can differentiate the equation on F to obtain

(4.9)

k
∑

i=1

dfi

fi

∣

∣

∣

∣

F

= 0 ,
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i.e.
k

∑

i=1

ω̃i =

k
∑

i=1

i∗ωi = 0 .

As this is a one-dimensional subspace of H1(V \E ,C) in the kernel of i∗, it must
span the entire kernel as claimed. Since we know F is homotopy equivalent to a
(k − 1)–torus, H1(F,C) is an exterior algebra on k − 1 generators and these may
be chosen to be any k − 1 of the {ω̃i}. �

5. Cholesky–Type Factorizations for Parametrized Families

We point out a simple consequence of the theorems for the question of when,
for a continuous or smooth family of complex matrices, (modified) Cholesky–type
factorization can be continuously or smoothly applied to the family of matrices.
To consider all cases together, we view (modified) Cholesky–type factorization as
giving a factorization A = B · K · C, for appropriate K, B and C, with possible
relations between B and C. For example, for complex symmetric matrices, K = I,
and B is lower triangular with C = BT .

In each case, for a continuous or smooth family As, s ∈ X , we seek continuous
(or smooth) families Bs and Cs so that As = Bs ·K ·Cs for all s ∈ X . While it may
be possible for each individual As to have a (modified) Cholesky–type factorization,
it may not be possible to do so in a continuous or smooth manner.

Parametrized Families of Real Matrices.

First for all three real cases of Cholesky-type factorization we have a unique
representation. Hence, the orbit map in the real case is a diffeomorphism, so we
may obtain a continuous or smooth factorization for the family by composing with
the inverse.

However, in this case the open orbit has a much simpler structure. The real
solvable groups are not connected, so the open orbits are a union of connected com-
ponents, each of which is diffeomorphic to the connected component of the group.
The groups have connected components which have as a maximal torus a “split
torus”which is isomorphic to (R+)k ≃ Rk, for appropriate k. As the connected
component is again an extension of this torus by a real nilpotent group, which is
again Euclidean, we conclude that the connected components are diffeomorphic to
a Euclidean space, and hence contractible, and the orbit map is a diffeomorphism
on each component.

Hence, in addition to the continuity or smoothness of factorizations in families
more is true. If (X,Y ) is a CW–pair and there is a continuous or smooth family
As, s ∈ Y with Cholesky-type factorization for a given type, the As can be extended
to a continuous or smooth family on X which still has continuous, respectively
smooth Cholesky factorization of the same type.

Parametrized Families of Complex Matrices.

By contrast with the real case, as a result of the structure of the complement
to the exceptional orbit varieties for both Cholesky and modified Cholesky–type
factorizations, the answer is different.

First, in the case of general m×m or (m− 1)×m matrices, the LU or modified
LU-factorizations are unique. Hence, the orbit maps G → V \E are diffeomor-
phisms. Hence, families can be continuously or smoothly factored. However, for
both symmetric and skew-symmetric matrices, there is finite isotropy so the orbit
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map G → V \E is a covering space and the continuous or smooth factorization in-
volves lifting a map into V \E up to G. There are well-known criteria for such a
lifting from covering space theory. We show that these conditions can be restated in
terms of the cohomology classes ωi (for each case), so that they define obstructions
to such a lifting for either symmetric or skew–symmetric Cholesky–type factoriza-
tion.

First we can use the ωj to define integral cohomology classes. If γ is a smooth

closed loop in V \E , then since ωj = f∗

j (dz
z

)
∫

γ

ωj =

∫

fj◦γ

dz

z
= 2π in

where n is the winding number of fj ◦ γ about 0. Thus, the integral of 1
2π i

ωj over
any smooth closed loop in V \E is an integer, which implies that it defines an integral
cohomology class in H1(V \E ,Z). In either the symmetric or skew–symmetric case,
we can define a homomorphism

ω : H1(V \E ,Z) → Z
k(5.1)

u 7→ (<
1

2π i
ω1, u >, . . . , <

1

2π i
ωk, u >) .

where < ·, · > is the Kronecker product. Then, we let ω2 be the composition of ω

with the projection Zk → (Z/2Z)k. As a consequence of the results in the preceding
sections, we have the following corollary.

Corollary 5.1. Suppose X is a locally path–connected space and that ϕ : X → M
defines a continuous, respectively smooth (with X a manifold), mapping to a space
of matrices so that for each s ∈ X, As = ϕ(s) has a (modified) Cholesky–type
factorization for any fixed one of the types considered in §1. If we are either

(1) in the case of general matrices with either Cholesky or modified Cholesky–
type factorization; or

(2) in the symmetric or skew–symmetric cases, and the obstruction ω2◦ϕ∗ = 0 ,

then there is a continuous, respectively smooth, (modified) Cholesky–type factoriza-
tion As = Bs ·K · Cs defined for all s ∈ X.

Proof. By an earlier remark, the conclusion already follows for (1). It is enough to
consider case (2).

We may denote the group of matrices acting on M by G, and let U denote
the open orbit, which is complement of the exceptional orbit variety E . Then, by
assumption, ϕ : X → U . By composing ϕ with an element of G, we may suppose
ϕ(s0) = K. Also, we may consider each path component of X separately, so we
may as well assume X is path connected.

By Theorem 3.4 and the proof of Theorem 3.1, for each type of Cholesky–type
factorization, the map p : G → U sending g 7→ g · v0 is a smooth finite covering
space (where we let v0 = K). Furthermore, by the proof of Theorem 3.4 for
the symmetric or skew–symmetric cases, p∗ : π1(G, 1) → π1(U , v0) is the inclusion
Zk →֒ Zk with image (2Z)k. Since X is locally path-connected and path-connected,
by covering space theory, there is a lift of ϕ to ϕ̃ : X → G (smooth if ϕ is smooth)
with ϕ̃(s0) = 1, if and only if ϕ∗(π1(X, s0)) ⊂ p∗(π1(G, 1)). As π1(U , v0) ≃ Zk

is abelian, by the Hurewicz theorem, this is equivalent to ϕ∗(H1(X, s0)) ⊂ (2Z)k.
However, this holds exactly when ω2 ◦ ϕ∗ = 0



18 JAMES DAMON AND BRIAN PIKE

Then, by the definition of the covering map p, the lift gives the continuous, resp.
smooth, Cholesky-type factorization for all s ∈ X . �

Remark 5.2. The obstruction in Corollary 5.1, will always vanish if e.g. H1(X,Z)
is a torsion group.

From the structure of the complement V \E being homotopy equivalent to a torus
for any of the cases of Cholesky or modified Cholesky–type factorization, we can
also give a sufficient condition for the extension problem. For a CW-pair (X,Y ),
a sufficient condition for the extension of a continuous or smooth family As on
Y , which has a continuous or smooth Cholesky factorization of given type, to a
continuous or smooth family on X having the Cholesky factorization of the same
type is that (X,Y ) is 1–connected.
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