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Introduction

In the first part of this paper, we introduced the notion of a skeletal structure
(M,U) as a generalization of the Blum medial axis M of a region with smooth
boundary. It consists of a Whitney stratified set M together with the multivalued
radial vector field U from points of M to the corresponding points of tangency on
the boundary, e.g. Fig. 1.

Figure 1. Blum Medial Axis giving a Skeletal Structure of an Object

We may write U = r · U1 for a unit vector field U1 and radius function r. For
such skeletal structures we introduced a radial shape operator Srad, an edge shape
operator SE and a compatibility 1– form ηU . Associated to Srad are the “principal
radial curvatures” κr i, the eigenvalues of Srad, and to SE the “principal edge
curvatures” κE i, which are generalized eigenvalues of SE .

Using these objects we gave a trio of conditions: Radial Curvature Condition,
Edge Condition, and Compatibility Condition, which are (necessary and) sufficient
to ensure that the “associated boundary”B is smooth. The skeletal set M and
associated boundary B are naturally related by a radial map defined using the
radial vector field U . The radial map is the time one map of an associated “radial
flow”from M to B. The three conditions control the properties of the radial flow.

In this second part we investigate the geometry of the associated boundary B
in the “partial Blum case”. This requires only one of the conditions which M

must satisfy to be a Blum medial axis; namely, the radial vector is orthogonal to
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the boundary, which is guaranteed by a “compatibility condition”. By contrast,
the full Blum condition also requires additional ocnditions such as e.g. at smooth
points of M the two values of U must have the same length and their difference
must be orthogonal to M .

In the partial Blum case, if the radius function is constant on an open set of M ,
then it follows that U is orthogonal to M . Thus, the boundary is a parallel man-
ifold whose geometry is determined in a standard way from M (see e.g. [Sp, Vol
III, Chap 3]). When r is not constant (and U is no longer orthogonal to M), there
are more complicated relations between the differential geometry of the boundary
and that of the medial axis. These relations also involve derivative properties of
the radius function r. The 2D case for boundary curves originated with [BN]. For
boundary surfaces in 3D, Nackman and Pizer obtained formulas for the Gauss-
ian and Mean curvatures of the boundary [Na] [NaP]. In the opposite direction,
differential geometric properties of the medial axis has been obtained from the dif-
ferential geometry of the boundary by Siersma, Sotomayor, and Garcia [Si] [SSG],
and also see [VaM1], [VaM2]. Actually in both of these cases the relationship is
with the differential geometry of a parallel surface of the boundary.

We take a different approach to this problem which directly considers the “geom-
etry of the radial vector field”as expressed by the radial and edge shape operators.
To understand the geometry of the boundary we determine how the radial shape
operator for level hypersurfaces Bt evolves under the radial flow, obtaining an ex-
pression in terms of the initial radial shape operator Srad (and the edge shape
operator for points corresponding to the edge of M). This allows us to explicitly
determine the differential geometry of the boundary B. When the compatibility
condition holds on an open subset W of smooth points of M , the lines along U

from this set intersect B orthogonally so we are partially in the Blum situation. In
this case, we explicitly express (in Theorem 3.2) the differential geometric shape
operator SB of B on the subset corresponding to W by

SB v
′ = (I − rSv)−1Sv

where Sv denotes a matrix representation of Srad with respect to a basis v, and
SB v

′ is a matrix representation with respect to an associated basis v′. From this
we deduce formulas for the principal curvatures κi of B in terms of the principal
radial curvatures κr i and conversely

κi =
κr i

(1 − r · κr i)
or κr i =

κi

(1 + r · κi)

(in particular, although Srad is not self–adjoint, it can be diagonalized with real
eigenvalues). In addition, we show the radial flow sends the eigendirections of Srad
to the principal normal directions of B.

In the case of “crest points”on the boundary, which correspond to edge points of
the medial axis, we obtain an analogous result expressing the differential geometric
shape operator of B at a crest point in terms of the edge shape operator SE v by
SB v

′ = (In−1,1 − rSE v)−1SE v, where In−1,1 is obtained from the identity matrix
by replacing the last element by 0. However, there is not such a simple relationship
between the principal curvatures of B and the principal edge curvatures.

We then determine the relation between the differential geometry of B and that of
the medial axis M via Srad. In Proposition 4.1 we give a relation between Srad and
Smed, the differential geometric shape operator of M . This relation also involves a
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“radial Hessian operator”Hr as well as an additional non–selfadjoint operator Z. In
light of the formulas we obtain in terms of Sv, this explains the added complications
in computing the differential geometric shape operator SB of the boundary in terms
of Smed.

Second, we determine in §5 the effect of a “deforming diffeomorphism”ϕ of (an
arbitrarily small neighborhood of) the skeletal structure (M,U) to yield a skeletal
structure (M ′, V ) = (ϕ(M), dϕ(U)). We introduce a radial distortion operator
Qϕv and edge distortion operator QE ϕ,v defined in terms of the second derivative
of ϕ at points on M . A third operator Eϕ v measures the failure of ϕ preserving
orthogonality to the skeletal set at edge points. Then, we measure the change in
the radial and edge shape operators as a result of applying ϕ. With respect to a
basis v for Tx0

M with associated basis v′ in Tϕ(x0)M
′ the radial and edge shape

operators in the image are given by Theorem 5.4

Sv
′ = σ(Sv +Qϕ,v) and SE v

′ = σ(SE v +QE ϕ,v +Eϕ v)

where σ is a “radial scaling factor”relating ‖U‖ and ‖V ‖.
Hence, these distortion operators allow us to determine whether the radial cur-

vature and edge conditions for smoothness of the associated boundary of the image
(M ′, V ) continue to hold. Also, for diffeomorphisms which satisfy a radial rigidity
condition we show that the compatibility 1-form pushes forward to be the compati-
bility one form of the image skeletal structure (ϕ(M), dϕ(U)). This implies that the
compatibility condition is unaltered by such a diffeomorphism. Thus, we deduce
sufficient conditions that applying a diffeomorphism to a skeletal structure will yield
a skeletal structure which still satisfies the three conditions for the smoothness of
the associated boundary (Theorem 5.7).

Moreover, in light of the above results we are able to determine in terms of
the initial radial and edge shape operators and the distortion operators on the
inital Blum medial axis, the changes in the differential geometric properties of the
associated boundary for the image. What is rather surprising is how the changes
in differential geometric properties under diffeomorphisms can be reduced to a
“linear relation”combined with the specific nonlinear relation between radial shape
operators and geometric shape operators for the boundary.

CONTENTS
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(5) Effects of Diffeomorphisms of the Skeletal Structure on Boundary Smooth-
ness and Geometry

Compatibility Conditions
Radial and Edge Distortion Operators
Radial and Edge Curvature Conditions of the Image Skeletal Struc-

ture
Geometry of the Boundary of the Image Skeletal Structure

1. Preliminaries: Shape Operators and Radial Flow

We recall from part I [D1] that beginning with a skeletal structure (M,U) in
R
n+1, we associate a boundary B = {x + U(x) : x ∈ M all values of U}. A

standard example we consider will be the Blum medial axis M of a region Ω with
generic smooth boundary B and its associated (multivalued) radial vector field U .
Then, the associated boundary B we consider here will be the initial boundary of the
object. We relate the boundary and skeletal set via the radial flow and the radial
map which is the time one map of the radial flow. To define these globally requires
the introduction of the “double of M”; however, in the neighborhood W of a point
x0 ∈ M with a smooth single-valued choice for U , we define a local representation
of the radial flow by ψt(x) = x+ t · U(x), and the radial map ψ1(x) = x+ U(x).

We define “shape operators”for the skeletal structure (M,U). At a smooth point
x0 of M we choose a “smooth value”of U . We recall that in a neighborhood of any
smooth point of M , values of U on one side form a smooth vector field. By a
smooth value of U me mean such a smooth choice of U values. Then, U = r · U1

for a unit radial vector field U1.
Radial Shape Operator: We define for v ∈ Tx0

M

Srad(v) = −projU (
∂U1

∂v
)

where projU denotes projection onto Tx0
M along U (in general, this is not orthog-

onal projection). Sv denotes the matrix representation of Srad with respect to a
basis v = {v1, . . . , vn}. The principal radial curvatures κr i are the eigenvalues of
Srad.

For a non–edge point x0 ∈M , a value of U extends to be smooth on some local
neighborhood component Mα of x0. For this smooth value of U , we may likewise
define the radial shape operator at x0.

Remark . Thus, the radial shape operator is also multivalued in that at a non–
edge point x0 there will be a radial shape operator for each value of U at x0, which
at smooth points means a value for each side of M .

We may write the derivatives
∂U1

∂vi
in vector notation (see (2.2) of [D1])

(1.1)
∂U1

∂v
= Av · U1 − ST

v
· v

where
∂U1

∂v
is a column vector with vector entries

∂U1

∂vi
, Av ·U1 denotes the column

vector with entries ai ·U1. We abuse notation to also let v denote a column vector
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with i–th entry the vector vi. Using this we compute the derivative of the radial
flow (see (4.2) of [D1]).

(1.2)
∂ψt

∂v
= t(dr(v) + r · Av) · U1 + (I − tr · Sv)T · v

where
∂ψt

∂v
and dr(v) are column vectors with i–th entries

∂ψt

∂vi
, resp. dr(vi).

Edge Shape Operator: For an edge point x0, with a smooth value of U defined on
a neighborhood of x0 (corresponding to one side of M), and a normal vector field
n to M , we define

SE(v) = −proj′(
∂U1

∂v
) .

Here proj′ denotes projection onto Tx0
∂M⊕ < n > along U (again this is not

orthogonal). Let v = {v1, . . . , vn} be a basis of Tx0
M so that {v1, . . . , vn−1} is a

basis Tx0
∂M , and vn maps under the edge parametrization map to c · U for c ≥ 0.

We refer to v as a special basis for Tx0
M . Then, SE v is a matrix representation

of SE with respect to the basis v in the source and {v1, . . . , vn−1,n} in the target.
Again by (2.4) of [D1]

(1.3)
∂U1

∂v
= AU · U1 − STE v

·

(

ṽ

n

)

where ṽ is the n− 1 dimensional column vector with i entry the vector vi. Then,
the derivative of the radial flow is given by the following (see (4.10) of [D1]).

(1.4)
∂ψt

∂v
= ÃU · U1 + (In−1,1 − tr · SE v)T ·

(

ṽ

n

)

Here In−1,1 is the n × n–diagonal matrix with 1’s in the first n − 1 positions and
0 otherwise. The principal edge curvatures κE i are the generalized eigenvalues of
(SE v, In−1,1) (i.e. λ such that SE v − λ · In−1,1 is singular).

2. Evolution of the Shape Operators under the Radial Flow

Evolution of the Radial Shape Operator from Smooth Points. We first consider the
evolution of the radial shape operator under the radial flow. Let x0 ∈ Mreg, and
let {v1, . . . , vn} be a basis for Tx0

M . We suppose we have chosen a smooth value
of U in a neighborhood of x0. If x0 is a non–edge singular point, then we can carry
out an analogous argument on a local component for x0.

For a given t, let

v′i = dψt(vi) =
∂ψt

∂vi
for i = 1, . . . , n.

We suppose that 1
tr

is not an eigenvalue of Srad (at x0). Then, by the proof of
Proposition 4.1 of [D1], ψt maps a neighborhood W of x0 diffeomorphically to a
smooth submanifold transverse to U(x0). Thus, the image of U along ψt remains
transverse in some neighborhood of x′0 = ψt(x0) to W ′ = ψt(W ) ⊂ Bt. Hence,
it has a well-defined radial shape operator, which we denote by Srad t. We will
compute Sv

′ t, the matrix representation of Srad t with respect to the basis {v′i}.

Proposition 2.1. Suppose that at a smooth point x0 ∈ Mreg, we have a smooth
value of U and a basis {vi} for Tx0

M . Let {v′i} denote the image of {vi} under
dψt(x0). If 1

tr
is not an eigenvalue of the radial shape operator Sv at x0, then the
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radial shape operator Sv
′ t for Bt at x′0 = ψt(x0) for the corresponding smooth value

of U is given by

(2.1) Sv
′ t = (I − tr · Sv)−1Sv .

Proof. To carry out the computation we again use vector notation and let v′ denote

the column vector with i–th entry the vector v′i. We wish to compute
∂U1

∂v′i
.

We first claim
∂U1

∂v′i
=

∂U1

∂vi
. To see this, we let γ(u) be a curve in W with

γ(0) = x0 and derivative γ′(0) = vi. Then, γ1(u) = ψt ◦ γ(u) is a curve in W ′ ⊂ Bt
with γ1(0) = x′0 and derivative γ′1(0) = v′i. Then, note that one way to compute

∂U1

∂v′i
=
∂(U1 ◦ γ1)(u)

∂u |u=0
=
∂(U1 ◦ γ)(u)

∂u |u=0

since U1 at γ1(u) is just the translation of U1 at γ(u), or

∂U1

∂v′i
=
∂U1

∂vi
.(2.2)

Thus, in vector form,
∂U1

∂v′
=
∂U1

∂v
. Then, first from (1.2),

(2.3)
∂U1

∂v
= Av · U1 − ST

v
· v .

Also, from the calculation of the derivative of the radial flow (1.2),

(2.4) v′ =
∂ψt

∂v
= t(dr(v) + r · Av) · U1 + (I − tr · Sv)Tv .

Hence, provided 1
tr

is not an eigenvalue of Sv, (I− tr ·Sv)T is invertible, so we may

solve for v and substitute into (2.3), using that
∂U1

∂v′
=
∂U1

∂v
to obtain

(2.5)
∂U1

∂v′
= A′

v
′ · U1 − (I − tr · ST

v
)−1ST

v
v′

where
A′

v
′ = Av − t · (I − tr · ST

v
)−1ST

v
(dr(v) + r · Av) .

Note that Sv and (I − tr · Sv)−1 commute so they may be written in either order.
By the definition of Srad t and (2.5) we obtain

ST
v
′ t = (I − tr · ST

v
)−1ST

v

which implies (2.1). �

Principal Radial Curvatures for Bt. Then, we can deduce information about the
principal radial curvatures at x′0 in terms of those at x0.

Corollary 2.2. Under the assumptions of Proposition 2.1, there is a correspon-
dence (counting multiplicities) between the principal radial curvatures κr i of M at
x0 and κr t i of Bt at x′0 given by

κr t i =
κr i

(1 − trκr i)
or equivalently κr i =

κr t i

(1 + trκr t i)
.

Furthermore, if ei is an eigenvector for the eigenvalue κr i, then e′i, which has the
same coordinates with respect to v′ as ei has with respect to v, is an eigenvector
with eigenvalue κr t i.
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Proof. We first use (2.1) to solve for Sv in terms of Sv
′ t. From (2.1) we may write

(2.6) Sv
′ t = Sv(I + tr · Sv

′ t) .

Then, (I + tr ·Sv
′ t) is also nonsingular, for if there were a vector v so that (I + tr ·

Sv
′ t)(v) = 0. Then, by (2.6), Sv

′ t(v) = 0; and hence, v = I(v) = 0. Thus, we may
use (2.6) to solve for Sv,

(2.7) Sv = (I + tr · Sv
′ t)

−1Sv
′ t .

Now, (2.1) and (2.7) allow us to compare the eigenvalues of Sv and Sv
′ t, and thus

the principal radial curvatures. If κr i is an eigenvalue for Sv with eigenvector ei,
then (1−tr ·κr i)

−1 is an eigenvalue for (I−tr ·Sv)−1 with the same eigenvector; and
hence, by (2.1), κr i·(1−trκr i)

−1 is an eigenvalue of Sv
′ t with eigenvector ei. We can

carry out a similar argument interchanging the roles of Sv and Sv
′ t using instead

(2.7). Hence, we obtain the correspondence between the principal curvatures and
principal radial curvatures as well as the corresponding eigenvectors. �

Evolution of the Radial Shape Operator from Edge Points. We can carry out an
analogous line of reasoning for the evolution of the radial shape operator for points
corresponding to an edge point x0. A smooth value of U in a neighborhood of x0

corresponds to one side of M . Although Bt is not smooth at ψt(x0) if t < 1, we
note that by Proposition 4.4 of [D1], provided 1

tr
is not a generalized eigenvalue for

(SE v, In−1,1), the one side of Bt corresponding to U is smooth and is transverse to
U at x0 when t > 0. Thus, the radial shape operator is defined for Bt at points
corresponding to edge points when t > 0. Hence, we may compute the radial shape
operator Sv

′t for this one side as follows.

Proposition 2.3. Suppose that at an edge point x0 ∈ ∂M , we have a smooth value
of U (corresponding to one side of M) and a special basis {vi} for Tx0

M . Let {v′i}
denote the image of {vi} under dψt(x0). If 1

tr
is not a generalized eigenvalue of

(SE v, In−1,1), then the radial shape operator Sv
′ t for Bt at x′0 = ψt(x0) is given by

(2.8) Sv
′ t = (In−1,1 − tr · SE v)−1SE v .

We note that unlike the situation for the radial shape operator, SE v does not
necessarily commute with In−1,1 so the order of the factors is important.

Proof. For the proof we argue as for Proposition 2.1, using (1.3) and (1.4) instead
of (1.1) and (1.2). We compute

(2.9)
∂U1

∂v′
= A′

U · U1 − STE v
(In−1,1 − tr · STE v

)−1v′

where

A′
U = AU + STE v

(In−1,1 − tr · STE v
)−1ÃU .

Hence, (2.9) provides an expression for
∂U1

∂v′
in terms of the basis v′ and U1. Thus,

by the definition of Sv
′t as a matrix representation for −projU (

∂U1

∂v
) where projU

denotes projection onto Tψt(x0)Bt along U(x0).

ST
v
′t = STE v

(In−1,1 − tr · STE v
)−1

implying (2.8). �
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Unlike the case of non–edge points, we cannot in general deduce a simple formula
for the principal radial curvatures for Sv

′ t in terms of the principal edge curvatures.
However, in a special case, we can draw this conclusion.

Example 2.4. Suppose
∂U1

∂vi
is orthogonal to n (i.e. ∈ Tx0

M) for i = 1, . . . , n− 1,

and
∂U1

∂vn
has a non–zero component for n. Then, the bottom row of SE v has the

form (0, . . . , 0, b). Let S̃E v denote the matrix obtained from SE v by removing the

last row and column. It is the matrix representation for −proj′′U (
∂U1

∂v
), where proj′′

denotes projection onto Tx0
∂M along the subspace < n, U >, with respect to the

basis ṽ = {v1, . . . , vn−1}.
Then, for each generalized eigenvalue λ 6= 0 of (SE v, In−1,1), the eigenvector

w = (w1, . . . , wn) must have wn = 0 and then w̃ = (w1, . . . , wn−1) is an eigen-

vector of S̃E v with eigenvalue λ. The converse also holds even for λ = 0. Thus,
the n − 1 generalized eigenvalues κE,i equal the eigenvalues κ̃E,i of S̃E v counting
multiplicities. Then, we see that (1 − trκ̃E,i) is an eigenvalue of In−1,1 − tr · SE v

and hence (1− trκ̃E,i)
−1κ̃E,i is an eigenvalue of (In−1,1− tr ·SE v)−1SE v both with

the same eigenvector (w̃, 0) for the corresponding eigenvector w̃ for S̃E v. Also,
a direct calculation shows that the standard basis vector en is an eigenvector for
(In−1,1 − tr · SE v)−1SE v with eigenvalue − 1

tr
. These give the principal radial

curvatures for Bt at x′0 = ψt(x0) (on the side corresponding to U) to be:

(2.10) −
1

tr
and κr t i =

κE i

(1 − trκE i)
i = 1, . . . , n− 1

where κE i = κ̃E i for i = 1, . . . , n− 1.

3. Differential Geometry of the Boundary in the Blum Case

We now use the preceding to determine the differential geometry of the boundary
in the Blum case. For this we do not even require the full strength of the Blum
conditions for the Blum medial axis. Recall for a smooth value of U defined on
a local component of M for x0, the compatibility 1–form ηU (v) = v · U1 + dr(v);
and the compatibility condition at x0 (for the given choice of U) asserts ηU ≡ 0 at
x0. We begin with a simple consequence of the compatibility condition holding at
a point x0. Then, as in Lemma 6.1 of [D1] we have.

Lemma 3.1. Suppose (M,U) is a skeletal structure and that x0 ∈ M is a non–
edge point. Let U be a smooth value (on a non–edge local manifold component Mβ

of x0) for which 1
r

is not an eigenvalue of Srad at x0. Then, the corresponding
compatibility 1–form ηU vanishes at x0 iff U(x0) is orthogonal to the associated
boundary at ψ1(x0).

Proof. By the proof of Proposition 4.1 of part I, as 1
r

is not an eigenvalue of Srad, it
follows that ψ1 is a local diffeomorphism. We choose a neighborhood W of the local
manifold component Mβ so that ψ1 is a diffeomorphism on W . For v ∈ Tx0

Mβ , we

compute the dot product
∂ψ1

∂v
· U1. Recall

(3.1)
∂ψt

∂v
= v + t(

∂r

∂v
· U1 + r ·

∂U1

∂v
) .
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Then,

∂ψ1

∂v
· U1 = v · U1 + dr(v)(U1 · U1) + r(

∂U1

∂v
· U1) .

Since differentiating U1 · U1 = 1 implies
∂U1

∂v
· U1 = 0, we obtain

∂ψ1

∂v
· U1 = v · U1 + dr(v) = ηU (v) .(3.2)

Thus, U1 being orthogonal to
∂ψ1

∂v
for all v is equivalent to ηU ≡ 0 at x0.

Thus, U1(x
′
0), which is also the translate of U1 along the line spanned by U(x0)

is orthogonal to Tx′

0
B where x′0 = ψ1(x0). �

Thus, if for a smooth value of U on an open set W of smooth points of M ,
the compatibility condition holds for ηU on all of W , then by Lemma 3.1, U is
orthogonal to the associated boundary on W̃ = ψ1(W ). Thus, we see that the

radial shape operator at a point x′ ∈ W̃ of the boundary is really the differential
geometric shape operator for B at x′. Hence, we can combine our calculation of
the radial shape operator at x′0 = ψ1(x0) given by Proposition 2.1 with Lemma
3.1 to compute the differential geometric shape operator, principal curvatures, and
principal directions of B in terms of the radial shape operator, principal radial
curvatures, and principal radial directions.

Differential Geometry at Associated Smooth Points. We consider a smooth point
x0 ∈ M (however, we could equally well consider a local component for a non–edge
singular point of M).

Theorem 3.2. Suppose (M,U) is a skeletal structure such that for a choice of
smooth value of U , the associated compatibility 1–form ηU vanishes identically on
a neighborhood of a smooth point x0 of M , and 1

r
is not an eigenvalue of Srad at

x0. Let x′0 = ψ1(x0), and v′ be the image of v for a basis {v1, . . . , vn} :

(1) The differential geometric shape operator SB of B at x′0 has a matrix rep-
resentation with respect to v′ given by

(3.3) SB v
′ = (I − r · Sv)−1Sv .

(2) Hence, there is a bijection between the principal curvatures κi of B at x′0 and
the principal radial curvatures κr i of M at x0 (counted with multiplicities)
given by

(3.4) κi =
κr i

(1 − rκr i)
or equivalently κr i =

κi

(1 + rκi)
.

(3) Furthermore, the principal radial directions corresponding to κr i are mapped
by dψ1 to the principal directions corresponding to κi.

Proof. By Lemma 3.1, the radial vector field U is orthogonal to the boundary at
points in a neighborhood of x′0 = ψ1(x0). Thus, the radial shape operator at a point
x′0 is really the differential geometric shape operator for B at x′0. Hence, we can
apply our calculation of the radial shape operator at x′0 given by Proposition 2.1.
We deduce that the radial shape operator, principal radial curvatures and principal
radial directions for Srad t at x′0 for t = 1 are really the differential geometric shape
operator, principal curvatures, and principal directions for B at x′0. �
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We obtain the following corollary for Blum Medial Axes.

Corollary 3.3. Suppose Ω is a region in R
n+1 with smooth boundary B and Blum

medial axis and radial vector field (M,U). Let x1 ∈ B be a point for which the
projection onto the medial axis along normals is a local diffeomorphism (with x1

mapping to x0 ∈ M). Then, the differential geometric shape operator for B at x1,
the principal normal curvatures and principal directions are given by the correspond-
ing radial shape operator for (M,U) at x0, together with its principal curvatures and
principal directions, as in Theorem 3.2.

Proof. The Blum condition implies that U is orthogonal to B which is the boundary
of the medial axis M with radial vector field U . Let x1 ∈ B be a point for which
the projection onto the medial axis along normals is a local diffeomorphism (with
x1 mapping to x0 ∈ M). Then, the inverse of the projection, which is given by
ψ1 is also a local diffeomorphism. Thus, 1

r
is not an eigenvalue of Srad for the

corresponding smooth value of U . Hence, we can apply Theorem 3.2 to obtain the
results. �

Remark 3.4 (Geometry at points corresponding to singular points). In the sit-
uation of Corollary 3.3, suppose instead x1 maps to a non–edge singular point
x0 ∈ Msing . Then x1 belongs to a local complementary component Ci of x0. Let
Mα be a local component for x0 which belongs to ∂Ci. Mα together with the
smooth value of U which points into Ci extend smoothly on a neighborhood of x0.
Then the corresponding differential geometric shape operator for B at x1, the prin-
cipal curvatures and principal directions are again given by the corresponding radial
shape operator for the corresponding smooth choice of U on Mα, together with its
principal curvatures and principal directions. For the Blum medial axis, these must
match up for the various choices of local components Mα for x0 belonging to ∂Ci.

As an immediate consequence, we deduce the Riemannian curvature for the
boundary using Gauss’s formula (see e.g. [Sp, Vol III] )

Corollary 3.5. Let Ω ⊂ R
n+1 be a region with smooth boundary and Blum medial

axis and radial vector field (M,U). Let x1 ∈ B be a point at which projection to the
medial axis along normals is a local diffeomorphism (with x1 mapping to x0 ∈M).
The Riemannian curvature of B is given with respect to basis v′ corresponding to
the basis v at x0 by

(3.5) R(v, w)(u) =< w̄, u > v̄− < v̄, u > w̄

where v̄ = (I − rSv)−1Svv, etc.

Hence, all intrinsic geometry of the boundary B is determined by the radial shape
operator. In the special case of surfaces in R

3, this reduces to multiplication by the
determinant of SB which is the Gauss curvature. In fact, in [D2] we further show
that as a result of the radial curvature condition, that the signs of the principal
and the Gauss curvatures are determined by the signs of κr i and det(Sv).

By contrast the “relative geometry”of B is more subtle and depends on more than
just Sv. For example, if we wish to compare principal curvatures κi at different
points or determine rates of change of κi along curves we cannot do it solely using
κr i. The relation is most easily expressed using the signed radii of curvatures
ri = 1

κi

and the signed radii of radial curvatures rr i = 1
κr i

, we may reexpress the
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relation (3.4) in the following simple radii of curvatures equation

(3.6) rr i = r + ri .

This reveals at the level of eigenvalues the basic relation between SB v
′ and Sv given

by (3.3) which can be rewritten in the case Sv is invertible as

(3.7) S−1
v

= r · I + S−1
B v

′ .

Then (3.6) allows us to relate the properties of ri at different points and the
rate of change of ri along various curves in terms of the corresponding changes for
rr i, but such comparison must involve r or its derivatives. We explicitly determine
in [D2] both the intrinsic and relative geometry for surfaces in R

3 using the radial
(and edge) shape operators, the principal radial (and edge) curvatures, and for the
relative geometry the “relative critical set”of r.

Differential Geometry at Crest Points (Associated to Edge Points). In the partial
Blum case, Theorem 3.2 allows us to compute the differential geometric shape
operator at smooth points of M . Hence, for a crest point of M which corresponds
to an edge point x0 under the radial map, we could determine the geometry at a
point on the boundary by taking the limit as x → x0 of SB v

′ = (I − r · Sv)−1Sv.
The problem with this is the unstable nature of Sv as we approach the edge of M .
Srad is computed by projection onto TxM along U . As we approach the edge, the
angle between U and TxM approaches 0, so the projection increasingly becomes
numerically unstable. It would be preferable to compute the shape operator at a
crest point using the edge shape operator because it involves projection along U but
onto the subspace Tx0

∂M⊕ < n >. Generically U will be bounded away from this
subspace providing a lower bound for the stability of the projection. We consider
a smooth value U corresponding to one side of M near an edge point x0. Then, we
can obtain the analogue of Corollary 3.3 for crest points.

Corollary 3.6. Suppose Ω is a region in R
n+1 with smooth boundary B and Blum

medial axis and radial vector field (M,U). Let x1 ∈ B be a crest point corresponding
to an edge point x0 ∈ ∂M . We let v be a special basis for Tx0

M with v′ the
corresponding basis for Tx1

B. Then, the differential geometric shape operator for B
at x1 has a matrix representation with respect to v′ given by

(3.8) SB v
′ = (In−1,1 − r · SE v)−1SE v .

Hence, the principal curvatures κi and principal directions of B at x1 are the eigen-
values and eigendirections (after identification) of the RHS of (3.3).

Proof. By the Blum condition, the U will be orthogonal to B. Thus, the radial
shape operator at a point will, in fact, be the differential geometric shape operator.
Then, we can apply Proposition 2.3 to obtain the stated form for SB v

′ , and then
the corresponding eigenvalues and eigendirections. �

Example 3.7. We return to Example 2.4, except we supposeM is the Blum medial
axis of B. We consider a crest point x1 which corresponds to a point x0 ∈ ∂M

for which
∂U1

∂vi
is orthogonal to n for i = 1, . . . , n − 1, and

∂U1

∂vn
has a non–zero

component for n. Then, by Example 2.4, we conclude that at the corresponding
crest point x1, the principal curvatures of B are:

(3.9) −
1

r
and κi =

κE i

(1 − rκE i)
i = 1, . . . , n− 1,
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where the κE i are the principal edge curvatures.

Using Corollary 3.6 and the edge shape operator to compute the principal cur-
vatures at a crest point x1 is difficult because the computation requires the use of
edge coordinates which are typically not known when given a Blum medial axis.
There is still a way to compute the principal curvatures as limits but now coming
from a stable computation.

We let {vi} denote a local frame for M in a neighborhood W of x0, an edge point
corresponding to x1. For i = 1, . . . , n− 1, we choose the vi to be tangent to T∂M
and smooth relative to local coordinates for M a manifold with boundary (they
are then also smooth with respect to edge coordinates). We also let vn = U1 tan,
the tangential component of U1. It is smooth with respect to edge coordinates. By
possibly shrinking W , we may assume that the vi together with n will form a frame
for R

n+1 at each point of W . We can define an operator S ′
E at each point of W

and extending SE as follows.

(3.10) S′
E(v) = −proj′′U (

∂U1

∂v
) ,

where now proj′′U denotes projection along U but onto L, the subspace spanned
by {v1, . . . , vn−1,n}. We note that at a non–edge point x near x0, the difference
between Srad and S′

E is just the subspace to which we project. For Srad it is TxM ,
while for S′

E it is L. However, as x → x0, L→ Tx0
M . We let S′

E v
denote the matrix

representation of S′
E with respect to the basis v in the source and {v1, . . . , vn−1,n}

in the target. If Sv
′ t denotes the matrix representation of the radial shape operator

on Bt at x′0 = ψt(x0) with respect to the corresponding basis v′, then it can be
computed as a limit.

Lemma 3.8. In the preceding situation,

(3.11) Sv
′ t = lim

x→x0

(In−1,1 − tr · S′
E v

)−1S′
E v

.

Proof. The same argument used to compute (2.8) in Proposition 2.3 shows that at
x′ = ψt(x) for x in a small neighborhood of x0,

(3.12) Sv
′ t = (In−1,1 − tr · S′

E v
)−1S′

E v
.

In (3.12), we take the limit as x→ x0. By continuity S′
E v

→ SE v, so we obtain

(3.13) lim
x→x0

(In−1,1 − tr · S′
E v

)−1S′
E v

= (In−1,1 − tr · SE v)−1SE v .

By Proposition 2.3, the RHS of (3.13) is Sv
′ t, yielding (3.11). �

We deduce the following as a consequence.

Corollary 3.9. The principal curvatures of B at a crest point x1 corresponding
to x0 ∈ ∂M (which are the eigenvalues of SB v

′) are the limits as x → x0 of the
eigenvalues of

(3.14) (In−1,1 − r · S′
E v

)−1S′
E v

.

Moreover, if the principal curvatures at x0 are distinct, then the principal directions
are the limits of the eigendirections of (3.14) as x→ x0.

Hence, the principal curvatures at x1 (and principal directions in the generic case)
can be approximated by the eigenvalues of (In−1,1 − r · S′

E v
)−1S′

E v
( respectively,

the eigendirections) for x sufficiently close to x0.
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4. Relation between the Radial and Differential Geometry of the

Skeletal Set in the Blum Case

In the preceding section we established in the (partial) Blum case, the funda-
mental relation between the radial geometry on the skeletal set and the differential
geometry of the boundary. By contrast, in the introduction we referred to work
in the Blum case relating the differential geometry of the boundary and that of
the skeletal set using derivative information of the radial function r. We derive
an explicit relation in the (partial) Blum case, between the differential geometric
shape operator of the skeletal set and the radial shape operator.

Let (M,U) be a skeletal structure which satisfies the compatibility condition on
an open set W ⊂ Mreg . Then, as a submanifold of R

n+1, Mreg has a Riemannian
structure. We let Smed denote the differential geometric shape operator of M
(“med”is to remind us that in the Blum caseM is the Blum medial axis). To obtain
a relation, we will introduce two other operators on W . To do so we decompose U1

into tangential and normal components U1 = U1 tan + ρn, where n is a unit normal
vector field pointing to the same side as the smooth value of U . We let ∇f denote
the Riemannian gradient (so that < ∇f, v >= df(v)). Then, by the compatibility
condition, dr(v) = − < U1, v >=< −U1 tan, v >. Thus, ∇r = −U1 tan. Hence,

ρ = (1 − ‖∇r‖2)
1

2 which we can think of as the “normal component function for
U1”.

The Riemannian Hessian is defined by H(f)(v, w)
def
=< ∇v(∇f), w >. Here

“∇v”denotes the covariant derivative of the vector field ∇f (we recall that for a

vector field X , ∇vX(x0) = proj
n
(
∂X

∂v
) where proj

n
denotes orthogonal projection

onto Tx0
N). By properties of the covariant derivative, H(f) is symmetric in v and

w. We define the Hessian operator Hf : Tx0
N → Tx0

N by Hf (v) = ∇v(∇f)(x0).
As < Hf (v), w >= H(f)(v, w), it follows that Hf is self-adjoint. We are interested
in the radial Hessian operator Hr. In the (partial) Blum case, Hr(v) = −∇vU1 tan.

One further operator must be defined. We let

(4.1) Z(v) = ρ−1(
∂U1

∂v
· n)U1 tan .

Unlike the case of Smed and Hr, Z need not be self–adjoint. Also, Z does not have
an obvious geometric meaning. Nonetheless ,there is the following relation between
the radial and the differential geometric shape operators.

Proposition 4.1. Let (M,U) be a skeletal structure which satisfies the compatibil-
ity condition on an open set W ⊂Mreg. Let U be a smooth value on W . Then, on
W there is the following relation

(4.2) Srad = ρ · Smed +Hr + Z .

Before deriving this relation, we note two consequences. We first see that al-
though Smed and Hr are self–adjoint, Z measures the failure of Srad to be self
adjoint. Second, given that we have derived in Theorem 3.2 the simple relations
between the differential geometric shape operator of the associated boundary and
radial shape operators SB and Srad, there follows from (3.4) combined with (4.2)
the relation between SB and Smed. In this relation, it is necessary to include both
Hr and Z as well as ρ. Hence, we see that using Srad instead of Smed leads to a more
natural relation with the differential geometric shape operator of the boundary.
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Proof. We are comparing

Srad(v) = −projU (
∂U1

∂v
) and Smed(v) = −proj

n
(
∂n

∂v
) .

In addition, we have

Hr(v) = −∇vU1 tan = −proj
n
(
∂U1 tan

∂v
) .

Thus, we first compare projU and proj
n
.

Let w = awn+w̃ be the decomposition into tangential and normal components.
Then, proj

n
(w) = w̃. By the decomposition of U1, n = ρ−1(U1 −U1 tan). Thus, we

can decompose w by

w = awρ
−1(U1 − U1 tan) + w̃

= awρ
−1 · U1 + (w̃ − awρ

−1 · U1 tan) .(4.3)

Thus, from (4.3), projU (w) = w̃ − awρ
−1 · U1 tan. Hence,

(4.4) proj
n
(w) = projU (w) + awρ

−1 · U1 tan .

Then,

(4.5) Srad(v) = −projU (
∂U1

∂v
) = −proj

n
(
∂U1

∂v
) + aρ−1 · U1 tan .

where a denotes the normal coefficient of
∂U1

∂v
.

Then, from the decomposition for U1, we compute

(4.6)
∂U1

∂v
=

∂U1 tan

∂v
+ dρ(v) · n + ρ ·

∂n

∂v
.

Thus, from (4.6)

−proj
n
(
∂U1

∂v
) = −proj

n
(
∂U1 tan

∂v
) + 0 − ρ · proj

n
(
∂n

∂v
)

= −∇vU1 tan + ρ · Smed(v)

= Hr(v) + ρ · Smed(v) .(4.7)

We substitute (4.7) into (4.5) and observe that as a =
∂U1

∂v
· n, the last term in

(4.5) is Z(v). This yields (4.2). �

5. Effects of a Diffeomorphism of the Skeleton on the Smoothness

of Boundaries

We are now in position to consider the effect of a diffeomorphism of a skeletal
structure on the associated boundary.

Definition 5.1. A diffeomorphism of skeletal structures ϕ : (M,U) → (M ′, V )
consists of: a diffeomorphism ϕ from an open neighborhood W of M to an open
subset of R

n+1 such that M ′ = ϕ(M), and V = dϕ(U).

Even though such a ϕ is defined geometrically, it is only defined on a small
neighborhood of M ; hence it does not guarantee any properties of the associated
boundary of the image skeletal structure.
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Figure 2. Diffeomorphism of a Skeletal Structure

We ask how the radial shape operators, edge shape operators, and compatibility
1–forms compare so we can determine the effects of ϕ on the Curvature, Edge and
Compatibility Conditions and also on the geometry of the associated boundary.

We let V = r1 ·V1, and V1(ϕ(x)) = σ(x) ·dϕx(U1(x)). We call σ the radial scaling
factor. As with U and r, σ is multivalued with a value at x for each value of U at
x. Then,

V = r1 · V1 = r1(ϕ(x))σ(x)dϕx(U1(x)) = dϕx(r1σ(x)U1(x)) .

Hence, we conclude r1(ϕ(x))σ(x) · U1(x) = r(x) · U1(x) or in abbreviated form
r = σ · r1 ◦ ϕ.

Compatibility Conditions. We really consider compatibility conditions in two differ-
ent contexts: for points ofMsing as one of the three conditions to ensure smoothness
of the associated boundary, and on open subsets of M to ensure the partial Blum
condition for the associated boundary. We wish to identify a natural condition
which guarantees that either of these conditions are preserved by ϕ.

We begin by determining the effect of ϕ on the compatibility 1–form. We use this
to identify a special case when the compatibility 1–forms behave well under pullback
by ϕ (or equivalently under push–forward by ϕ). Let ηV be the compatibility 1–
form for (M ′, V ), and let x′0 = ϕ(x0).

Definition 5.2. A diffeomorphism of skeletal structures ϕ : (M,U) → (M ′, V ) will
be said to be radially rigid at (x0, U0) if

dϕ(U0) · dϕ(v) = U0 · v

for all v ∈ R
n+1; and in addition dσ(x0) ≡ 0.

In particular, this implies that ‖dϕ(U0)‖ = ‖U0‖ and that the dot product of U0

with vectors in Tx0
Mβ is preserved for each local component Mβ on which the value

U0 extends smoothly. In terms of the preceding notation, it follows that σ(x0) = 1.
If ϕ is radially rigid on an open set of smooth points, then σ ≡ 1 on the open set
so dσ ≡ 0, and the second condition is superfluous.

We begin with a simple consequence of ϕ being radially rigid.

Lemma 5.3. Let ϕ : (M,U) → (M ′, V ) be a diffeomorphism of skeletal structures.
Suppose U is a smooth value on a local component for x0 with V the corresponding
image value at x′0 = ϕ(x0). If ϕ is radially rigid at x0 then ϕ∗ηV = ηU at x0.
Hence, if ϕ is radially rigid at x0 and the compatibility condition holds for ηU at
x0, then it holds for ηV at x′0.

In particular, if both ϕ is radially rigid and (M,U) satisfies the compatibility
condition on an open set W , then so does (M ′, V ) satisfy the compatibility condition
on ϕ(W ).
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Proof. To be specific, suppose the smooth value U is defined on the local component
Mβ of x0. We consider the corresponding component for M ′

β = ϕ(Mβ). We let

v′ = dϕ(v) for v ∈ Tx0
Mβ . Then,

ηV (v′) = V1 · v
′ + dr1(v

′)

= σdϕ(U1) · dϕ(v) + dr1(dϕ(v)) ,

or as r1 ◦ ϕ = r
σ
,

= σdϕ(U1) · dϕ(v) + (
1

σ
dr(v) −

r

σ2
dσ(v)) .(5.1)

However, by radial rigidity σ(x0) = 1 (so r1(x
′
0) = r ◦ ϕ(x0)) and dσ(x0) ≡ 0.

Hence, (5.1) simplifies to

ηV (v′) = dϕ(U1) · dϕ(v) + dr(v)

= (dϕ(U1) · dϕ(v) − U1 · v) + ηU (v) .(5.2)

Then, first ϕ is radially rigid at x0 iff the first term on the RHS of (5.2) is zero for
all v ∈ Tx0

Mβ. This term in (5.2) is zero for all v ∈ Tx0
Mβ iff ϕ∗ηV (x0) = ηU (x0)

on Mβ.
If ηU (x0) = 0 for a local component Mβ, then as d(ϕ|Mβ)(x0) is an isomorphism,

ηV = 0 on Tx′

0
ϕ(Mβ). �

Hence, a diffeomorphism ϕ : (M,U) → (M ′, V ) of skeletal structures which is
radially rigid at all points preserves the compatibility condition in that (M ′, V ) will
satisfy the compatibility condition on all open sets ϕ(W ) for which (M,U) satisfies
it on W .

We should remark that being radially rigid at all points is a fairly restrictive
condition in that V will have the same length as U at all corresponding points and
have the same relative position to the tangent spaces. For example, if on some
open W ⊂Mreg, U is a normal vector field with ‖U‖ constant, then the associated
boundary to M corresponding to W will consist of parallel manifolds of M . If
ϕ is radially rigid on W , then V will also be a normal vector field of constant
length ‖V ‖ (= ‖U‖) so the associated boundary for (M ′, V ) will also consist of
parallel manifolds of M ′ for ϕ(W ). However, the diffeomorphism ϕ|W is otherwise
arbitrary.

Radial and Edge Distortion operators. We second examine how a diffeomorphism
of skeletal structures ϕ modifies the radial and edge shape operators. We do so by
introducing operators which measure the radial and edge distortion due to ϕ. Let
x′0 = ϕ(x0) and M ′

β = ϕ(Mβ). For a linear operator A : Tx0
Mβ → Tx′

0
M ′
β , we use

dϕ to define an associated operator (dϕx0
)−1 ◦A from Tx0

Mβ to itself.
We define the radial distortion operator Qϕ for non–edge points x0 of M and

smooth value U on Mβ by

(5.3) Qϕ(v) = −dϕ−1
(

projV (d2ϕx0
(v, U1))

)

where projV denotes projection along V onto Tx′

0
M ′
β . To obtain a matrix represen-

tation for a basis {v1, . . . , vn} with vi
′ = dϕ(vi) for all i, let

(5.4) d2ϕx0
(vi, U1) = aϕ i · V1 −

n
∑

i=1

qjiv
′
j ,
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or in vector form as earlier

(5.5) d2ϕ(v, U1) = Aϕv · V1 −QTϕv
· v′ ,

where d2ϕ(v, U1) is a column vector with i–th entry the vector d2ϕx0
(vi, U1). Then,

Qϕv = (qij) is a matrix representation of Qϕ with respect to the basis v.
Likewise at a point x0 ∈ ∂M , we define the edge distortion operator QE ϕ by

(5.6) QE ϕ(v) = −dϕ−1
(

proj′V (d2ϕx0
(v, U1))

)

.

We let {v1, . . . , vn} be a special basis for Tx0
M so {v1, . . . , vn−1} is a basis for

Tx0
∂M and vn maps under the edge parametrization to c · U1. Again we write

v′i = dϕ(vi), and let n′ be a unit normal vector field to M ′ in a neighborhood of
the edge point x′0 = ϕ(x0). Then, we analogously obtain for i = 1, . . . , n

(5.7) d2ϕx0
(vi, U1) = aϕ i · V1 − cϕ i · n

′ −

n−1
∑

j=1

bϕjiv
′
j ,

or in vector form (for n–dimensional vectors)

(5.8) d2ϕ(v, U1) = Aϕ v · V1 − Cϕv · n′ − Bϕv · ṽ′

(ṽ′ denotes the n−1 dimensional column vector with i–th entry vi). We let QE ϕ,v =
(Bϕv Cϕ v)T . Then QE ϕ,v is the matrix representation for QE ϕ with respect to
the special basis{v1, . . . , vn} in the source and {v1, . . . , vn−1,n} in the target.

Third, because ϕ need not preserve orthogonality to the skeletal set at the edge
points, we also express

(5.9) dϕx0
(n) = an · V1 + cn · n′ +

n−1
∑

j=1

bn j · v
′
j .

Then, we define the n × n matrix Eϕv whose ji–th entry eji = ci · bn j for j < n

and eni = ci · (cn − 1), with ci denoting the i–th entry of CU in (1.4).

Radial and Edge Curvature Conditions for the Image Skeletal Structure. We next
see that Qϕv measures how ϕ contributes to the radial curvature of the image
(M ′, V ). While QE ϕ,v also measures the contribution of ϕ to the edge shape
operator of ∂M ′ at edge points, there is a second contribution from Eϕv, resulting
from the failure of ϕ to preserve orthogonality to the skeletal set on the edge points.

We relate the radial and edge shape operators for the two skeletal structures as
follows.

Theorem 5.4. With the above notation,

(1) For a non-edge point x0 ∈ M and choice of smooth value for U (on a local
component of x0), with corresponding value for V , let Sv, resp. Sv

′ , denote
the matrix representations of the radial shape operators at x0 for the basis
{v1, . . . , vn}, resp. x′0 = ϕ(x0) for the basis {v′1, . . . , v

′
n}. Then

(5.10) Sv
′ = σ(Sv +Qϕv) .

(2) For a point x0 ∈ ∂M , let SE v, resp. SE v
′ denote the matrix representations

of the edge shape operators at x0 for the special basis {v1, . . . , vn}, resp.
x′0 = ϕ(x0) for the special basis {v′1, . . . , v

′
n}. Then,

(5.11) SE v
′ = σ(SE v +QE ϕ,v +Eϕv) .
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Remark 5.5. If dϕ preserves orthogonality to the skeletal set at the point x0 ∈ ∂M

in the sense that dϕ(x0)(n) = n′, then at x0, cn = 1 and bn i = 0 for 1 ≤ i ≤ n− 1
so Eϕv = 0. Then, the edge shape operator is only altered by the effects of d2ϕ.

Proof. For 1), we must compute
∂V1

∂v′i
at a point of x0 ∈Mreg. Then,

∂V1

∂v′i
=

∂

∂v′i
(σ ◦ ϕ−1 · dϕ(U1) ◦ ϕ

−1)

= (
∂σ

∂vi
◦ ϕ−1) · dϕ(U1) ◦ ϕ

−1 + (σ ◦ ϕ−1) ·
∂(dϕ(U1))

∂vi
◦ ϕ−1 .(5.12)

After differentiating, we will not include composition with ϕ−1 which will be un-
derstood. We note that the derivative in the second term on the RHS of (5.12) is

really
∂

∂vi
(dϕx(U1(x))) so we compute it by applying the chain rule.

(5.13)
∂

∂vi
(dϕx(U1(x))) = d2ϕx(vi, U1) + dϕx(

∂U1

∂vi
) .

Then, by (5.12), (5.13), (5.4), and (1.2) we obtain

∂V1

∂v′i
=
∂σ

∂vi
dϕ(U1) + σ(aϕ i · V1 −

n
∑

j=1

qjiv
′
j) + σ · dϕx(ai · U1 −

n
∑

j=1

sjivj)

= (
∂σ

∂vi
· σ−1 + σ · aϕi + ai) · V1 − σ(

n
∑

j=1

(sji + qji)v
′
j) .(5.14)

We can write this in vector form as

(5.15)
∂V1

∂v′
= Ãϕv

′ · V1 − σ(Sv +Qv)T · v′

where

Ãϕv
′ = σ−1 · dσ(v) + σ ·Aϕ v

′ +Av .

Applying projV and then −dϕ to equation (5.15) yields (5.10).

For 2), we analogously compute
∂V1

∂v′i
at a point x0 ∈ ∂M , using instead (5.7),

(5.9), and (1.4). We obtain in vector form

(5.16)
∂V1

∂v′
= AV v

′ · V1 − σ
(

SE v +QE ϕ,v +Eϕv

)T
·

(

ṽ′

n′

)

where ṽ′ is the n− 1 dimensional column vector with i–th entry v′i and where the
actual form of AV v

′ is not important. Again, applying proj′V and −dϕ to (5.16)
yields (5.11). �

We let {bi} denote the eigenvalues of Sv +Qϕv, and {di} denote the generalized
eigenvalues of (SE v +QE ϕ,v +Eϕ,v, In−1,1). Then, we note as a corollary

Corollary 5.6. Let ϕ : (M,U) → (M ′, V ) be a diffeomorphism of skeletal struc-
tures. Then, (M ′, V ) satisfies the Radial Curvature Condition iff at all non-edge
points of M

(5.17) r < min{
1

bi
} for all positive eigenvalues bi of Sv +Qϕv .
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Likewise, (M ′, V ) satisfies the Edge Condition iff at all points of ∂M ,

r < min{
1

di
} for all positive generalized eigenvalues di of(5.18)

(SE v +QE ϕ,v +Eϕ,v, In−1,1).

Proof. By Theorem 5.4, the principal radial curvatures are the eigenvalues of σ(Sv+
Qϕv), i.e. σ ·bi; and the principal edge curvatures are the generalized eigenvalues of
σ(SE v +QE ϕ,v +Eϕ,v), i.e. σ · di. Thus, the Radial Curvature Condition requires

r

σ
= r1 < min{

1

σ · bi
} for all positive eigenvalues bi .

This is equivalent to (5.17). A similar argument establishes (5.18) �

Thus, Corollary 5.6 provides us with concrete criteria for checking the smooth-
ness of the associated boundary for (M ′, V ) away from singular points by only using
the radial curvature and distortion data on the original M .

At singular points we combine the preceding results to obtain sufficient conditions
in terms of the shape operators and distortion operators on M in the case ϕ is
radially rigid. We must separately verify that the image skeletal structure satisfies
the initial local conditions from part I [D1, Def. 1.7]. However, provided the image
skeletal structure satisfies the initial local conditions, we can combine the results
of Corollary 5.6 and Lemma 5.3 together with Theorem 2.3 of [D1] to conclude the
smoothness of the boundary for an image skeletal structure.

Theorem 5.7. Suppose that ϕ : (M,U) → (M ′, V ) is a diffeomorphism of skeletal
structures which is radially rigid at the singular points of M . Suppose M satisfies
the compatibility condition on Msing and at non–edge points

r < min{
1

bi
} for all positive eigenvalues bi of Sv +Qϕv;

and at all points of ∂M ,

r < min{
1

di
} for all positive generalized eigenvalues di of

(SE v +QE ϕ,v +Eϕ,v, In−1,1).

Provided (M ′, V ) satisfies the local initial conditions ([D1, Def. 1.7]), then it has a
smooth boundary in the sense of Theorem 2.3 of Part I [D1].

Geometry of the Associated Boundary of the Image Skeletal Structure. The results
of Theorem 5.4 also allow us to compute the differential geometry of the associated
boundary of the image skeletal structure (M ′, V ).

Corollary 5.8. Let ϕ : (M,U) → (M ′, V ) be a diffeomorphism of skeletal struc-
tures which is radially rigid on an open set Z ⊂ M . Suppose (M ′, V ) satisfies the
conditions (5.17) and (5.18) on Z, and that x0 ∈ Z with a choice of smooth value
of U on a local component of x0.

(1) If x0 is not an edge closure point, then

(5.19) SB′
v
′ = (I − r(Sv +Qϕv))−1 · σ · (Sv +Qϕv) .
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(2) If x0 is an edge closure point then

(5.20) SB′
v
′ = (In−1,1−r(SE v+QEϕ,v+Eϕ,v))−1 ·σ ·(SE v+QE ϕ,v+Eϕ,v) .

Remark 5.9. With the assumptions of Corollary 5.8, if both SB v and SB′
v
′ are

invertible, we may use (5.19) to rewrite (3.7) as follows:

(5.21) σ−1S−1
B′

v
′ = S−1

B v
−

(

S−1
v
Qϕ,v(Sv +Qϕ,v)−1

)

.

We see that (5.21) is a consequence of (3.7) by using (5.19) and r1 ◦ ϕ = r to
write

σ−1S−1
B′

v
′ − S−1

B v
= (Sv +Qϕ,v)−1 − S−1

v

which we easily verify implies (5.21).
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