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Introduction

Many of the key properties of (complex) isolated complete intersection singular-
ities are encoded in the discriminants of their versal unfoldings. This includes the
Milnor number, monodromy, and deformation properties. An especially important
property of discriminants and bifurcation sets which has important consequences
for their topology is that they are free divisors, e.g. by the work of Arnold [A1],
[A2], Saito [Sa], Looijenga [L], Bruce [Br], Terao [To], etc. Most of these results
establishing freeness for both discriminants and bifurcation sets follow from a more
general result concerning the freeness of discriminants for KV equivalence, which
captures the equivalence of germs of varieties obtained as nonlinear sections of V
[D5], [D6]. Furthermore, David Mond and this author [DM], [D2], [D5], [Mo] have
shown the fundamental role of freeness for determining the topology of discrimi-
nants of mappings, and more generally nonisolated singularities arising as nonlinear
sections of free divisors.

This is just one example illustrating the importance of understanding proper-
ties of singularities in the relative case where properties of mappings, singularities,
and divisors are determined relative to a subvariety V in source or target. Instead
the equivalence can preserve a fixed hypersurface V in the source. Then, V can
be viewed as a “boundary”and the equivalence becomes that for “boundary sin-
gularities”investigated by Siersma [Si], Arnold [A1], [A2], Lyashko [Ly], Bruce and
Giblin [BG1] [BG2], Tari [Ta], etc. A second case concerns equivalence of germs of
mappings, divisors, or subvarieties on a singular variety V , where either the variety
V is fixed (which goes back to Galligo’s work on stability [Ga]) or is also allowed
to vary.

In several special cases, Arnold, Lyashko, and Zakalyukin have shown the freeness
of bifurcation sets of “simple boundary singularities”. Also, results of Goryunov
[Go2] combined with Mond and Van Straten [MVS] established the freeness of the
bifurcation set for functions on space curves in C3. These special results suggest
more general results might be true for equivalences preserving varieties. In this
paper, we shall apply results from parts I and II [D5] and [D6], to identify when
discriminants and bifurcation sets are free for the above types of equivalences for
the case of holomorphic germs and germs of complex analytic varieties V .

Partially supported by National Science Foundation grants DMS-0103862 and DMS-0405947.

1



2 JAMES DAMON

Equivalences for maps Cn, 0 → Cp, 0 relative to variety V, 0.

Relative Equivalence Groups Bifurcation Sets,
Discriminants

i) Fixed hypersurface V, 0 ⊂ Cn, 0 V K, discriminants
equivalence preserving V V A, V R+ bifurcation sets

ii) Fixed hypersurface V, 0 ⊂ Cp, 0 KV discriminants
K–equivalence preserving V

iii) Fixed complete Intersection K(V ), discriminants
V, 0 ⊂ Cn, 0, and equivalence A(V ), R+(V ) bifurcation sets
for map germs on V

iv) Varying hypersurface X0, 0 on KV2,V1
discriminants

varying complete intersection
X, 0 ⊂ Cn, 0

v) Varying hypersurface X0, 0 on KCp,V1
discriminants

varying ICIS X, 0 ⊂ Cn, 0

Table 1: Relative Equivalences and Their Associated Geometric Subgroups

We consider modifications of the equivalences A, K, and R to preserve V , a
nonisolated complete intersection or hypersurface singularity. These will include:
1) the equivalence of functions and mappings preserving a free divisor in the source
(i.e. “boundary singularities”) as i) in Table 1; 2) divisors, functions, or map germs
on an “almost free”complete intersection where both are allowed to vary, as iv)
and v) in Table 1; and 3) complete intersection map germs on fixed free complete
intersections as iii) in Table 1.

These equivalence groups are “geometric subgroups”G of A or K (see [D3] and
[D4, §8]). Hence, germs which have finite codimension for the equivalence G have
G–versal unfoldings (and there is a criteria for G–stability of germs). We shall apply
the general criteria given in part II [D6] to determine when the discriminants for
G–stable germs or bifurcation sets for G–versal unfoldings are free divisors.

Freeness is explained in Part II by the motto

Cohen–Macaulay of codim 1 + Genericity of Morse Type Singularities

=⇒ Freeness of Discriminants

Here “discriminants”are understood in a generalized sense which includes both
discriminants and bifurcation sets (we shall use the term “discriminant”except when
we distinguish “bifurcation sets”for A–type equivalences from discriminants of A–
type stable germs).

We remark that Morse–type singularities are quite different from usual Morse
singularities. They differ for each equivalence group G, and may only be generic
in a restricted dimension range. Morse–type singularities for KV –equivalence then
play a special role. They contain topological information about V exhibited by
sections of varying dimensions. In addition, despite the considerable differences
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among the Morse–type singularities for various equivalence relations we consider,
we shall classify them in terms of Morse–type singularities for KV –equivalence.
Consequently, throughout this paper, we shall refer to “Morse–type singularities of
V ”, which will always mean for KV –equivalence.

Second, “Cohen–Macaulay of codim 1”is realized when the geometric subgroup
G is “Cohen–Macaulay”in the sense of Part II. If G is Cohen–Macaulay, without
the genericity of Morse– type singularities, or G is not Cohen–Macaulay, but has a
“Cohen–Macaulay Reduction” (CM–reduction) G∗ in the sense of Part II, then the
G–discriminant will still have a weaker free* divisor structure defined by the module
of G–liftable, resp. G∗–liftable, vector fields. This still allows us to determine the
(vanishing) topology of the discriminant (or bifurcation set).

For KV –equivalence of germs viewed as sections of a free divisor V , the criterion
for the freeness of KV –discriminants reduces to the conditions given in part I. We
include KV –equivalence here because it plays an important role in understanding
the conditions for the other equivalences.

First, in §2 we consider equivalences of germs f0 : Cn → Cp, 0 which preserve
a fixed free divisor in the source V, 0 ⊂ Cn, 0 (denoting the groups V K, V A, and

V R+). In Theorem 1 we first prove that V K is Cohen–Macaulay provided n− p <
hn(V ), the holonomic codimension of V . Hence, the V K–discriminant has a free*
divisor structure defined by the module of V K–liftable vector fields. If in addition,
V, 0 generically has Morse–type singularities in dimension n − p, then the V K–
discriminant is a free divisor. We prove this by establishing in §6 a natural “dual
correspondence”between Morse–type singularities for KV and V K–equivalences.

We then apply this result to deduce corresponding results for the freeness (or ob-
taining free* divisor structures) for V A–discriminants for V A–stable germs (Theo-
rem 2) and for V R+–discriminants for V R+–versal unfoldings (Corollary 3). Lastly,
in Theorem 4, we prove the V A–bifurcation set is a free divisor for germs belonging
to a V A–distinguished bifurcation class (an analogue of Theorem 3 of part I for
A–bifurcation sets).

These theorems are applied in §2 to all of the “boundary singularities”mentioned
earlier. One unexpected result is that although Arnold and Lyashko showed for sim-
ple boundary singularities of functions that the discriminants for versal unfoldings
are free divisors, this does not hold in general for nonsimple boundary singularities.
Whether it holds depends upon whether the singular boundary V generically has
Morse–type singularities. Then, if V is a free divisor and generically has Morse–
type singularities in dimension n− p, then freeness of V K–discriminants also holds
for mappings Cn, 0 → Cp, 0.

Second, in §3 we consider the relative situation of a divisor X0 on a (nonisolated)
complete intersection X , where we allow both to vary. The complete intersection
is allowed to deform as an “almost free complete intersection”, which is a nonlinear
section of a free complete intersection (ICIS singularities are the simplest examples).
For this situation,we consider a relative form of KV –equivalence, denoted KV2,V1

,

for a nonlinear section f0 of a pair V1, 0 ⊂ V2, 0 so (X,X0) = (f−1
0 (V2), f

−1
0 (V1)).

When (V2, V1) is a pair of free complete intersections, we show that KV2,V1
has a

Cohen–Macaulay reduction, deducing that the discriminant for this equivalence is
a free* divisor (Theorem 5), although it need not be free.

An important special case occurs when V2 = Cp1 so X is an ICIS and V1, 0 ⊂
Cp1 , 0 is a free divisor. Provided V1 generically has Morse type singularities, the
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KCp1 ,V1
–discriminant is a free divisor (Theorem 6). In particular, this yields the

freeness of discriminants for versal unfoldings of pairs which consist of the zero set
of a function germ on an ICIS, or an ICIS together with its intersection with an
almost free divisor such as: nonlinear generic arrangements of isolated hypersurface
singularities, discriminants of finitely determined map germs, etc.

Third, in the second part of §3, we consider the collection of equivalences K(V ),
A(V ) or R+(V ) of mappings on a fixed free complete intersection V . This is iii)
in Table 1. Now we only obtain general results about when discriminants are free*
divisors. We give a CM–reduction for K(V ) and deduce Theorem 7 that K(V )–
discriminants for versal unfoldings of ICIS germs on V are free* divisors. From
this we deduce free* divisor structures for the discriminants for A(V )–stable germs
(Theorem 8) and R+(V )–versal unfoldings (Corollary 9).

We actually prove these results in a different order, considering the hardest cases
iv) and v) of Table 1 first in §4 and §5. This allows us to outline arguments in later
sections by referring to the methods of these proofs. The case i) of Table 1 will be
covered in §6 and §7, and iii) of Table 1, in §8.

In §9, we conclude by briefly discussing the implications of the results on free
divisors for understanding the discriminants of versal unfoldings. The author would
like to thank the referee for a number of very valuable comments, including raising
some of the questions in §9.

1. Preliminaries

Notation and Terminology from Parts I and II. We begin by recalling several
key ideas from parts I and II [D5] and [D6] and [D2] which are central to the results
obtained here. See these references for further details.

G–liftable vector fields and G–discriminants. All of the groups of equivalences G we
consider are geometric subgroups of A or K for the category of holomorphic germs.
For such groups we have the basic theorems of singularity theory such as the finite
determinacy and versality theorems (see [D3]). For such a group there is an action
of G on a space of germs F , where in the examples we consider F = C(n, p) is
the space of holomorphic germs f : Cn, 0 → Cp, 0. There is also a corresponding
action of the group of unfoldings Gun(q) on the space of unfoldings Fun(q) on q
parameters, for all integer q ≥ 0. These actions satisfy four conditions given in
[D3]. For an unfolding F ∈ Fun(q), we have the orbit map αF : Gun(q) → Fun(q)
and the corresponding infinitesimal orbit map dαF : TGun,e(q) → TFun,e(q) (for
q = 0 and a germ f0 this is denoted dαf0

: TGe → TFe). A germ of a vector field
ζ ∈ θq is said to be G–liftable if there is a ξ ∈ TGun,e(q) such that dαF (ξ + ζ) = 0.
Let LG(F ) denote the OCq ,0–module of G–liftable vector fields.

The orbit tangent spaces TGun,e ·F (resp. TGe · f0) are the images of dαF (resp.
dαf0

) and the normal spaces NGun,e · F (resp. NGe · f0) are the cokernels. For
a germ f0 of finite G–codimension with unfolding F on q parameters, NGun,e · F
is a finitely generated OCq ,0–module. The G–discriminant is the complex analytic
set DG(F ) = supp(NGun,e · F ) (as an OCq ,0–module). This set could equally well
be thought of as a bifurcation set. However, results from part I show that often
bifurcation sets can be reinterpreted as discriminants so we retain the term “G–
discriminant”understood in this more general sense. A group G is said to have
geometrically defined discriminants if for a G–versal unfolding F , the flow generated
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by a G–liftable vector field ζ preserves DG(F ). All standard examples have this
property.

Derlog(V ) and KV –equivalence. A basic group on which many others are based is
KV –equivalence of nonlinear sections f0 : Cn, 0 → Cp, 0 of a germ of an analytic
set V, 0 ⊂ Cp, 0, which captures the ambient equivalence of V0 = f−1

0 (V ). The
properties of the nonlinear sections are determined by Derlog(V ), the module of
vector fields ζ on Cp, 0 which are tangent to V , i.e. ζ(I(V )) ⊂ I(V ) for the ideal
I(V ) of germs vanishing on V . The classes of V whose sections give the analogues of
ICIS are the free divisors (Derlog(V ) is a free module of rank p) and free complete
intersections (Derlog(h) is a free module for the defining equation h of V , where
Derlog(h) is the module of vector fields ζ on Cp, 0 such that ζ(h) = 0). Evaluating
these modules at a point y ∈ Cp gives the logarithmic tangent spaces Tlog(V )(y)

and Tlog(h)(y). These can be used in place of TyS, the tangent space of the stratum
of the canonical Whitney statification of V . The codimensions of the sets off which
TyS = Tlog(V )(y) (resp. Tlog(h)(y)) are denoted by hn(V ) (resp. h(V )). We can
consider transversality to V at y either using TyS (geometric transversality) or
Tlog(V )(y) (algebraic transversality).

We weaken the notion of freeness for divisors by allowing V to be stabilized to
V ′ = V ×Cr and replacing Derlog(V ′) by a free submodule M of rank p+ r which
defines V ′ with a nonreduced structure. We denote the module M by Derlog∗(V )
and refer to V as being a free* divisor defined by M . This is highly non–unique,
so we seek an M which captures, as well, geometric properties of V .

Cohen–Macaulay properties of groups G. For us, a key algebraic property of G is
its being Cohen–Macaulay, which means: G has geometric defined discriminants,
and for each versal unfolding F ∈ Fun(q), NGun,e · F is Cohen–Macaulay as a
OCq ,0–module, with supp(NGun,e · F ) of dimension q − 1.

For a group G with geometrically defined discriminants, a Cohen–Macaulay re-
duction (CM–reduction) is a geometric subgroup G∗ which is Cohen–Macaulay and
satisfies: f ∈ F has finite G∗–codimension iff it has finite G–codimension; and for
an unfolding F of a finite G–codimension germ,

supp(NG∗
un,e · F ) = supp(NGun,e · F )

This support is the G–discriminant of F , denoted DG(F ). In all of the examples

we consider, if G∗ is the CM–reduction of G, then we shall let Derlog∗(DG(F ))
def
=

LG∗(F ), the module of G∗–liftable vector fields. For example, if V is a free divisor,
KV is Cohen–Macaulay (by results of part I); while if V is a free complete inter-
section KV is not in general Cohen–Macaulay but it does have the CM–reduction
[D6, Theorem 4] K∗

V , which consists of diffeomorphisms in KV whose restrictions
to V ×Cn equal restrictions of elements of Kh (diffeomorphisms which preserve the
level sets of the defining equation h for V (see [D6, §6]).

To apply the main theorems of part II, we provide a criterion for genericity of
G–liftable vector fields resulting from genericity of Morse–type singularities.

Morse–type singularities for KV –equivalence. Given an analytic germ V, 0 ⊂ Cp, a
map germ g : Cn, 0 → Cp, 0 is a Morse–type singularity in dimension n for KV –
equivalence if g has KV,e–codim = 1 and is KV –equivalent to a germ f0 such that for
a common choice of local coordinates both f0 and V are weighted homogeneous.
By part I [D5] or Lemma 7.3 of part II [D6], a Morse–type singularity can be
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put into normal form via KV –equivalence. We may assume V, 0 = Cr × V0, 0
for V0, 0 ⊂ Cp′

, 0, and with respect to coordinates for which V0, 0 is weighted
homogeneous, f0 has the local normal form

(1.1) f0(x1, . . . , xn) = (0, . . . , 0, x1, . . . , xp′−1,

n∑

j=p′

x2
j )

with a KV –versal unfolding

(1.2) F (x, u) = (f0(x) + (0, . . . , 0, u), u)

The sign of weight wt(yp) >,<, or = 0 is called the exceptional weight type; and

(by Lemma 4.10 of part I or Lemma 7.8 of part II) u
∂

∂u
is KV –liftable.

The notion of Morse–type singularity extends to y ∈ V using K(V,y)–equivalence.
Then, V is said to generically have Morse–type singularities in dimension n if: all
points on the canonical Whitney stata of V of codimension ≤ n+1 have Morse–type
singularities of nonzero exceptional weight type; and any stratum of codimension
> n+ 1 lies in the closure of a stratum of codimension = n+ 1.

Genericity of G∗–liftable vector fields. For a general equivalence G, it is more
difficult to describe the analogues of Morse–type singularities and deduce their
genericity. This can effectively be done for G∗, a CM–reduction of G through the
notion of G generically having G∗–liftable vector fields. This means that for a G–
versal unfolding F on q parameters, there is a Zariski open subset Z of DG(F )reg

having nonempty intersection with all irreducible components so that at points
u ∈ Z : (1) h ·Θq ⊂ LG∗(F ) as sheaves on Z and (2) Tlog∗(DG(F )(u) = TuDG(F )reg .

For V, 0 ⊂ Cp, 0 the group KV acts on C(n, p) for n and p fixed. For y ∈ V
in a neighborhood of 0, we have a local form K(V,y) for KV –equivalence of germs
with target y. We consider G a geometric subgroup of KV which we suppose has
analogous local forms. Then, we can apply the following criterion to verify that G
generically has G∗–liftable vector fields.

(1.3) Criterion for genericity of G∗–liftable vector fields:

(1) There is a local form of G∗–equivalence at each y, and the module of G∗–
liftable vector fields restricts to the module of locally liftable vector fields
for the local G∗–equivalence for all y in a neighborhood of 0.

(2) V generically has Morse–type singularities in dimension n.
(3) There is a Zariski open subset U of jets algebraically transverse to V and

have G∗
e –codim 0 for the local form of G∗–equivalence at the target point y.

(4) There is a Zariski open subset W of the set of jets not algebraically trans-
verse to V such that for each point y in a stratum of V of codimension
≤ n+ 1, W is dense in the fiber over y and : i) any z ∈ W is the jet of a
Morse–type singularity; ii) it has G∗

e –codim 1 and is G∗–equivalent to the

local normal form (1.1) and u
∂

∂u
is G∗–liftable for the versal unfolding F

in (1.2).

Proposition 1.1. If G is a geometric subgroup of KV with CM–reduction G∗ which
satisfies the criterion (1.3), then G generically has G∗–liftable vector fields.
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Proof. Let F be a G∗–versal unfolding of f0. As G ⊆ KV , F is also a KV –versal
unfolding. Any irreducible component of DG(F ) = DG∗(F ) contains a Zariski open
subset of parameter values u such that F̄ (x, u) misses strata of V of codimension
> n + 1 (as this is true for a KV –versal unfolding by (2) of (1.3) and the results
of Part I). Again arguing as in Part I and using (3), we may perturb f0 so it only
has a single Morse–type singularity. A further perturbation will ensure that its jet
belongs to W for that y. Hence, by (4), the single Morse–type singularity is G∗–

equivalent to the local normal form (1.1) and u
∂

∂u
is G∗–liftable for the unfolding

F in (1.2).
Thus, the regular parts of the irreducible components contain nonempty Zariski

open subsets consisting of a single Morse–type singularity which has G∗
e –codim 1

for the local G∗–equivalence and locally for the normal coordinate u, u
∂

∂u
is G∗–

liftable. Thus, the discriminant for the local G∗–equivalence near such a y is a
smooth hypersurface contained in DG∗(F ) and hence agrees with it near y. This
implies (2) of the definition for genericity of G∗–liftable vector fields as all of the

tangent vector fields are locally G∗–liftable near y. Together with u
∂

∂u
being G∗–

liftable, this implies that locally all of h · Θp(y) is G∗–liftable (with h the defining
equation for DG(F )). Finally, using (1) of (1.3), we conclude property (1) for the
genericity of G∗–liftable vector fields. �

2. Discriminants for Equivalences Preserving Free Divisors in Source

Let V, 0 ⊂ Cn, 0 be a germ of a free divisor. We consider the equivalences of map
germs f0 : Cn, 0 → Cm, 0 preserving V in the source: V A, V K, or V R+ (if m = 1),
as given in Table 1 (as already mentioned, these are geometric subgroups of A or
K).

First, consider V K equivalence. The V K–discriminant for a versal unfolding
F (x, u) = (Fu(x), u) of f0 is given by

D
V K(F ) = {u ∈ Cq : Xu = f−1

u (0) is not smooth or

Xu is not algebraically transverse to V }

The first theorem expresses conditions that D
V K(F ) is a free divisor in terms of the

dimension n −m and V generically having Morse–type singularities in dimension
n−m.

Theorem 1. Suppose that V is a free divisor and that f0 : Cn, 0 → Cm, 0 ,n ≥ m,
has finite V K–codimension with versal unfolding F . If n−m < hn(V ), then V K is
Cohen–Macaulay so the discriminant D

V K(F ) is a free* divisor defined by

Derlog∗(D
V K(F )) = module of V K–liftable vector fields.

If moreover V generically has Morse–type singularities in dimension n − m then
D

V K(F ) is a free divisor.

Next, we can apply the preceding to discriminants of V A–stable germs using the
relation between V K–versal unfoldings and V A–stable germs analogous to that for
K and A due to Mather [M-IV] or Martinet [Mar]. If f0 : Cn, 0 → Cm, 0 is a stable
germ for V A–equivalence, then F (x, y) = (F̄ (x, y), y), with F̄ (x, y) = f(x) − y is
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a V K–versal unfolding of f0 and the projection π : F̄−1(0), 0 → Cm+q , 0 can be
identified with f (see Lemma 7.3).

The V A–discriminant of a germ f0 : Cn → Cm is defined to be

D
V A(f0) = {y ∈ Cm : there is x ∈ f−1(y) with df0(x)(Tlog(V )(x) 6= TyCm}

A condition for freeness of D
V A(f0) for stable f0 takes the following form.

Theorem 2. Suppose that V, 0 ⊂ Cn, 0 is a free divisor and that f0 : Cn, 0 → Cm, 0,
n ≥ m, is V A–stable. Provided n −m < hn(V ), the V A–discriminant D

V A(F ) is
a free* divisor defined by

Derlog∗(D
V A(f0)) = module of V A–liftable vector fields for f0

If moreover V generically has Morse–type singularities in dimension n −m, then
the V A–discriminant is a free divisor.

Third, we obtain results for V R+–equivalence. A versal unfolding F (x, u) =
(Fu(x), u) : Cn+q , 0 → Cp+q, 0 of a germ f0 under V R+–equivalence is also versal
for V A–equivalence. For V R+, the discriminant of F viewed as a map germ is

{(y, u) ∈ C1+q : F−1
u (y) is not smooth or is not algebraically transverse to V }

Then, for V R+–equivalence, there is the following.

Corollary 3. Suppose that V is a free divisor which generically has Morse–type
singularities in dimension n−1. Let f0 : Cn, 0 → C, 0 have finite V R+–codimension
with versal unfolding F . If n− 1 < hn(V ), then the V R+–discriminant of the map
germ F is a free divisor defined by the module of V A–liftable vector fields.

For f0 of finite V A–codimension, we may also consider the V A–bifurcation set
of an V A–versal unfolding F of f0. We ask when the results on the freeness of
bifurcation sets for hypersurface germs in [Br] and [To] and more general map
germs in [D5] extend to V A–equivalence. The bifurcation set is defined by

B
V A(f) = {u ∈ Cq : Fu is not V A–stable}.

We need the analogue of a distinguished bifurcation class in [D5, Def.6.1].

Definition 2.1. For a free divisor V, 0 ⊂ Cn, 0, map germs f0 : Cn, 0 → Cp, 0
belong to a V A–distinguished bifurcation class if : they belong to the distinguished
bifurcation class in the sense of (6.1) of [D5]; and, in addition, for all x ∈ V in a
neighborhood of 0, with V K–equivalence for germs at x denoted by (V,x)K

(1) all (V,x)K–classes of extended codimension > p + 1 lie in the closure of

(V,x)K–classes of extended codimension p+ 1;
(2) all (V,x)K–classes of extended codimension < p+1 contain germs of (V,x)Ae–

codimension 1.
(3) all (V,x)K–classes of extended codimension < p+1 are (V,x)K–simple germs.

Theorem 4. Suppose that V is a free divisor which generically has Morse–type
singularities in dimension n − p, with n− p < hn(V ). Suppose f0 : Cn, 0 → Cp, 0
belongs to the V A–distinguished bifurcation class and has finite V A–codimension.
Then, for the versal unfolding F of f0, the bifurcation set B

V A(F ) is a free divisor
with

Derlog(B
V A(F )) = module of V A–liftable vector fields.

The proofs of these theorems will be given in §6 and §7.
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Example 2.2. Let V, 0 ⊂ C2, 0 be the free divisor defined by yx2 − y3 = 0. We
consider the projection map f0(x, y) = x under V K–equivalence. The V K–versal
unfolding is given by f(x, u1, u2) = (x+u1y+u2, u1, u2) and the V K–discriminant
is the u2–axis. However, u2 is a modulus which reflects the cross ratio of the three

lines f−1
0 (0) together with the y–axis; hence the vector field

∂

∂u2
is not V K–liftable

(although u1
∂

∂u2
is). Thus, the module of V K–liftable vector fields does not define

D
V K(f) as a free divisor, but rather only a free* divisor. This is the counterpart

of the example for nonlinear sections of free divisors given in Part I (at the end of
§9 in [D5]).

We consider the consequences of Theorems 1-4 to the various examples mentioned
earlier.

Discriminants for Equivalence of ICIS Preserving a Singular Divisor in

the Source. We consider consequences for equivalences of germs of holomorphic
functions preserving a free divisor in the source V, 0 ⊂ Cn, 0 .

(2.3) Germs on Manifolds with Boundaries and Corners

Let V = Ak×Cn−k, where Ak ⊂ Ck denotes the Boolean arrangement consisting
of the coordinate hyperplanes. The corresponding real version of V is a general
boundary or corner. The important special property of Boolean arrangements,
and hence such V , is that they generically have Morse–type singularities in all
dimensions and are holonomic so hn(V )(= hn(Ak)) = ∞ (see [D5, Lemma 7.7].
Hence, the preceding results apply to them without restriction.

We draw the following conclusions for germs f0 : Cn, 0 → Cp, 0.

(1) If f0 has finite V K–codimension with V K–versal unfolding F , then by The-
orem 1 the V K–discriminant of F is a free divisor.

(2) Moreover, if f0 is V A–stable then by Theorem 2, the V A–discriminant of
f0 is a free divisor.

(3) Hence, for holomorphic germs f0 : Cn, 0 → C, 0 on manifolds with bound-
aries and corners, considered by Siersma [Si], Arnold [A2], Lyashko [Ly],
and Goryunov [Go2] (for C2), the V K or V R+–discriminants of the appro-
priate versal unfoldings are free divisors.

(4) Also, finite V A–codimension germs f0 : Cn, 0 → C, 0 belong to the V A–
distinguished bifurcation class of Def. 2.1 (both conditions ii) and iii) are
immediate and i) can be easily checked using methods of [D5, §4]). Thus,
by Theorem 4, the V A–bifurcation sets are free divisors.

(5) Lastly, for holomorphic germs of “projection mappings ”of manifolds with
boundaries and corners f0 : Cn, 0 → C2, 0 (considered in the real case by
by Bruce-Giblin [BG1] for n = 2 and Tari [Ta] for n = 3), both the V K–
discriminants of versal unfoldings and the V A–discriminants of V A–stable
projections are free divisors.

(2.4) Germs on Manifolds with Singular Boundaries

Next, suppose we allow more general “singular boundaries”, which are free divi-
sors V, 0 ⊂ Cn, 0. There are still a number of important cases where V generically
has Morse–type singularities. Two such cases are: 1) V, 0 is a discriminant of a sta-
ble germ V = D(F ), where F is the versal unfolding of a germ in the distinguished
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bifurcation class defined in [D5, Def. 6.1]; and 2) V = Ck × Cn−2 is a higher order
cusp hypersurface for Ck ⊂ C2 a higher order cusp defined by x2

1 − xk
2 = 0.

We consider a finite V K–codimension germ f0 : Cn, 0 → Cp, 0 for n ≥ p, with

V K–versal unfolding F . If V = D(F ) we suppose n − p < hn(D(F )), while for
V a higher order cusp hypersurface hn(V ) = ∞ so there is no other condition
on n − p. Then, again by Theorem 1 the V K–discriminant of F is a free divisor.
Also, if f0 is V A–stable then by Theorem 2, the V A–discriminant of f0 is a free
divisor. In the special case of function germs f0 : Cn, 0 → C, 0, we deduce that the

V R+–discriminant of F is a free divisor.
These results apply to both function germs f0 : Cn, 0 → C, 0 for singular bound-

aries V which are the discriminants of stable Ak singularities considered by Arnold
[A1] (now Ak refers to the Morin singularities not the Boolean arrangements),
and to function germs f0 : C2, 0 → C, 0 with V a (higher order) cusp singularity
considered by Lyashko [Ly]. The V K–discriminants or V A–discriminants of versal
unfoldings of such germs are free divisors.

However, the freeness fails as soon as we consider functions when the singular
boundary V no longer generically has Morse–type singularities. This already occurs
for V = C × Ck for C, 0 ⊂ C2 an isolated curve singularity other than an A1 or
higher cusp Ak singularity.

(2.5) Germs on Manifolds with General Free Boundaries

Third, we consider the equivalence of germs f0 : Cn, 0 → Cp, 0, n ≥ p, preserving
a singular boundary V, 0 ⊂ Cn, where V is a free divisor, but without assuming
genericity of Morse–type singularities in dimension n − p. Examples include: an
arbitrary free arrangement of hyperplanes, a discriminant of a stable germ outside
the distinguished bifurcation class in §6 of Part I, bifurcation sets, etc. Provided
n−p < hn(V ), then applying Theorems 1-3, we can still conclude that a V K–versal
unfolding of f0 still has V K–discriminant which is a free* divisor (with a similar
conclusion for V R+–equivalence if p = 1). Also, the V A–discriminant will be a
free* divisor if f0 is V A–stable. We demonstrated in example 2.2 that the more
limited conclusion is unavoidable.

3. Discriminants of Mappings and Divisors on Complete Intersections

The second situation we consider concerns a divisor or mapping on a complete
intersection, where we allow the complete intersection to be fixed or vary. Unlike the
previous section, the equivalence will only capture the properties on the complete
intersection, ignoring behavior off of it.

We first consider the case of a divisor on a complete intersection, where both
vary. An important special case concerns a divisor which is the intersection of an
almost free divisor with an ICIS. Third, we describe analogous results for a mapping
on a fixed free complete intersection V .

Relative Complete Intersections. For the relative case of a divisor on a com-
plete intersection we allow both to vary. We consider a pair V1, 0 ⊂ V2, 0 ⊂ Cp, 0,
of germs of subvarieties, which we denote by (V2, V1). We define the equivalence
of such pairs via KV2,V1

–equivalence, which is the analogue of KV –equivalence. It
is the subgroup of K consisting of germs of diffeomorphisms of Cn × Cp, 0 which
perserve each of the Cn × Vi, i = 1, 2 (see [D1] for precise definition). Just as
KV –equivalence captures the equivalence of the germs of varieties f−1

0 (V ), so too
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the equivalence KV2,V1
captures the equivalence of the pair of germs of varieties

(f−1
0 (V2), f

−1
0 (V1)). By the same arguments for KV [D1], KV2,V1

is a geometric
subgroup of A or K , so the basic theorems of singularity theory apply to it.

Remark 3.1. If the Vi form a pair of increasing linear subspaces Cp1 ⊂ Cp2 then
KV2,V1

–equivalence is the equivalence of contact to a pair of flags as in [K], [Zl], and
[Zl2]. This is also a type of ladder of mappings as in [D4, §8]

Definition 3.2. The pair V1, 0 ⊂ V2, 0 ⊂ Cp, 0, will be called a free complete
intersection pair if V2 = Cp1 ×W2 and V1 = W1 ×W2, where W1, 0 ⊂ Cp1 , 0 is a
free divisor and W2, 0 ⊂ Cp2 , 0 is a free complete intersection.

We then consider pairs obtained as pullbacks by a section f0 : Cn, 0 → Cp, 0 of
a free complete intersection pair (V2, V1), where we require f0 to be algebraically
transverse off 0 to both V1 and V2. If we represent f0 = (f01, f02) under the
decomposition Cp = Cp1 × Cp2 , then f0 algebraically transverse to V2 implies f02
is algebraically transverse to W2; and similarly f0 algebraically transverse to V1

implies f01 is algebraically transverse to W1. Then, X = f−1
0 (V2) = f−1

02 (W2) is
an “almost free complete intersection”, and likewise, f−1

01 (W1) is an almost free
divisor. In addition, f0 being algebraically transverse to V1 off 0 implies that
X0 = f−1

0 (V1) is the transverse intersection off 0 of f−1
01 (W1) with X (see [D2, §7]).

The intersection is again an almost free complete intersection.
For a versal unfolding F (x, u) = (Fu(x), u) of f0, the KV2,V1

–discriminant can
be described geometrically as follows.

DV2,V1
(F ) = {u ∈ Cq : Fu fails to be (algebraically) transverse to either V1 or V2 }

A special case will be the free complete intersection pair V1 ⊂ Cp1 ⊂ Cp. A
section f0 transverse off 0 yields a pair X0 ⊂ X ⊂ Cn, where X, 0 is an ICIS, and
X0 is the intersection of an almost free divisor with X . The KCp1 ,V1

–discriminant

of a versal unfolding f consists of parameter values u where either Xu = f−1
u 2 (0) is

not smooth or fu 1|X : X → Cp1 is not (algebraically) transverse to V1.
To investigate the properties of the KV2,V1

–discriminant for a pair (V2, V1), we
introduce the subgroup

K∗
V2,V1

= KV2,V1
∩ K∗

V2

where the group K∗
V2

is the CM-reduction of KV2
(recall §1 and see Part II, [D6,

§6]). We shall see in §4 that this is again a geometric subgroup of A or K.

Theorem 5. For the free complete intersection pair (V2, V1), suppose n < hn(V1),
h(V2). Then, for nonlinear sections f0 : Cn, 0 → Cp, 0, K∗

V2,V1
is a Cohen–Macaulay

reduction for KV2,V1
. Hence, for a KV2,V1

–versal unfolding F of f0, the KV2,V1
–

discriminant DV2,V1
(F ) is a free* divisor defined by

Derlog∗(DV2,V1
(F )) = module of K∗

V2,V1
–liftable vector fields.

In the special case of a pair (Cp1 , V1), where V1 generically has Morse–type sin-
gularities in appropriate dimensions, this free* structure is reduced and DV2,V1

(F )
is a free divisor.

Theorem 6. Consider a complete intersection pair V1, 0 ⊂ Cp1 , 0 ⊂ Cp, 0, so
V1, 0 ⊂ Cp1 , 0 a free divisor. Let p = p1 + p2. Suppose f0 : Cn, 0 → Cp, 0 is a non-
linear section transverse to (Cp1 , V1) off 0 with n > p2, so that X = f−1

0 (Cp1) is an
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ICIS of dimension n − p2 > 0. Provided V1 generically has Morse–type singular-
ities in dimension dim (X) and dim (X) < hn(V1), then the KCp1 ,V1

–discriminant
DCp1 ,V1

(F ) of the versal unfolding F of f0 is a free divisor. Moreover,

Derlog(DCp1 ,V1
(F )) = module of K∗

Cp1 ,V1
–liftable vector fields.

Remark . As used in Theorem 2, hn(V1) refers instead to codimension in Cp1 .

The proofs of these theorems will be given in §4 and §5.

Applications to Relative Complete Intersections. We consider (X,X0), which
consist of an ICIS X, 0 ⊂ Cn, 0 of codimension p2 and X0 which is the intersection,
transverse off 0, of X and an almost free divisor V ′

1 , 0 obtained by pullback of the
free divisor V1, 0 ⊂ Cp1 , 0. The versal unfolding allows both the almost free divisor
V ′

1 and the isolated complete intersection X to vary with the parameters u, and the
equivalence captures the ambient equivalence of the pair X0u = V ′

1 u ∩ Xu ⊂ Xu.
The relative discriminant DCp1 ,V1

(F ) of the versal unfolding F consists of parame-
ter values u where either Xu is not smooth, or Xu is smooth but not transverse to
V ′

1 , i.e. the restriction gu|Xu is not transverse to V1.

(3.3) Isolated Hypersurface Singularities on ICIS

We consider g0 : X, 0 → C, 0 which has an isolated singularity so that X0 =
X ∩ g−1(0) is again an ICIS. Then, KC,{0}–equivalence for (g0, f0) is equivalent to
considering the K–equivalence of g0|X , where both X and g0 are allowed to vary.
In this case, V1 = {0} ⊂ C, so the genericity of Morse–type singularities trivially
holds. Morse–type singularities consist of g0|X, x0 where (X, x0) is a smooth germ
and g0|X has a standard Morse singularity at x0. Now the relative discriminant
corresponds to the discriminant for the versal deformation of g0|X . The geomet-
ric description just given of the discriminant for a versal unfolding F = (G,F1)
becomes: either the fiber Xu is not smooth or it is smooth but Ḡ(·, u)|Xu has a
singularity. By Theorem 6, we conclude the discriminant of the versal unfolding is
a free divisor.

We mention that the recent results of Goryunov [Go2], and Mond–Van Straten
[MVS] deduce the freeness of the discriminant for functions on space curves (in
C3) from a “µ = τ”result. For complete intersection curves in Cn, we obtain the
freeness from Theorem 6 but for K–equivalence of the function on the deforming
curve. The Mond–Van Straten “µ = τ”result suggests that this should be the same
as R–equivalence of the function on the deforming curve.

(3.4) Generic Hyperplane Arrangements on an ICIS

Second, we consider the Boolean hyperplane arrangement Ap ⊂ Cp, which con-
sists of the coordinate hyperplanes of Cp and satisfies hn(Ap) = ∞. For a linear
embedding germ g0 : Cn, 0 → Cp, 0 which is transverse to (the strata of ) Ap off 0,

A = g−1
0 (Ap) is a generic arrangement of hyperplanes. Suppose A is transverse to

the ICIC X off 0. The versal deformation of A′ = A ∩X , allowing both g0 and X
to deform, has discriminant the KCp,Ap

–discriminant. By Theorem 6, this is always
a free divisor.

(3.5) Generic Arrangement of Isolated Hypersurface Singularities on ICIS
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More generally we can replace the linear embedding in 2) by any germ g0 :
Cn, 0 → Cp, 0 which is transverse to Ap off 0, V ′ = g−1

0 (Ap) is now a generic
nonlinear arrangement of hypersurfaces with isolated singularities at 0. For a de-
formation gu of g0 and Xu of X , a stable point corresponds to a pair Xu, Au where
Xu is smooth and Au = g−1

u (Ap)∩Xu is a normal crossing divisor on Xu. The dis-
criminant corresponds to values u where this fails. If V ′ is algebraically transverse
to X off 0, then again the versal deformation of X0 = V ′∩X , allowing both g0 and
X to deform, has discriminant the KCp,Ap

–discriminant which again by Theorem 6
is always a free divisor.

(3.6) Almost Free Hypersurface Arrangements on ICIS

Suppose in either (3.4) or (3.5), we replace the Boolean arrangement Ap by any
other free hyperplane arrangement A. Then, hn(A) = ∞, although A does not
generically have Morse–type singularities. We may still conclude by Theorem 1
that the KCp,A–discriminant is a free* divisor.

(3.7) ICIS Intersecting a Discriminant

Suppose instead that we consider the composition of mappings

(3.1) Cm, 0
f1

−−−−→ Cn, 0
f0

−−−−→ Cp, 0

where m ≥ n > p, f1 is a finite A–codimension germ with discriminant D(f1), and
f0 defines an ICIS X . We consider the behavior of the pair X0 = D(f1) ∩X ⊂ X
where we allow both f1 and f0 to vary.

If F1 : Cm′

, 0 → Cn′

, 0 denotes the stable unfolding of f1, then f1 is induced by
pull–back by a germ g1 : Cn, 0 → Cn′

, 0 and D(f1) = g−1
1 (D(F1)). Then, the versal

deformation of X0 ⊂ X allowing both f1 and f0 to vary has discriminant which
is the K

Cn′
,D(F1)–discriminant. By Theorem 5, provided n − p < hn(D(F1)), this

discriminant is a free* divisor. The value of hn(D(F1)) is given by the results in §6
of part I for various classes of germs F1.

Moreover, Theorem 6 also implies that when f1 belongs to the “distinguished
bifurcation class”in Part I, §6, then the K

Cn′
,D(F1)

–discriminant is a free divisor.

Mappings on Fixed Free Complete Intersections. Next, suppose V, 0 is fixed,
and consider map germs on V . We suppose V, 0 ⊂ Cn, 0 is a free complete intersec-
tion with good defining equation h. We consider germs f0|V : V, 0 → Cm, 0 where
f0 : Cn, 0 → Cm, 0 defines an ICIS, under A(V ), K(V ), or R+(V )–equivalence
(where m = 1 for R+(V )) as in Table 1.

For K(V )–equivalence, the K(V )–discriminant for a versal unfolding f(x, u) =
(fu(x), u) of f0 can be described geometrically as follows. We let Xu = f−1

u (0).

DK(V )(F ) = {u ∈ Cq : there is an x ∈ V so either Xu is not smooth at x

or is not algebraically transverse to V at x}

To deduce properties of the K(V )–discriminant, we introduce the subgroup
K(V )∗ for which the diffeomorphisms in the source are restrictions to V of dif-
feomorphisms which preserve the fibers of h.

Theorem 7. Suppose that V is a free complete intersection and that f0 : Cn, 0 →
Cm, 0 ,n ≥ m, has finite K(V )–codimension with versal unfolding F . If n −m <
h(V ), then K(V )∗ is a Cohen–Macaulay reduction of K(V ), so the discriminant
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DK(V )(F ) is a free* divisor defined by

Derlog∗(DK(V )(F )) = module of K(V )∗–liftable vector fields.

Remark . Even if V generically has Morse–type singularities, we cannot improve
the conclusion of the theorem because even for Morse–type singularities the ap-
propriate vector fields are not, in general, K(V )∗–liftable. We encountered this
problem in part II for KV when V is a free complete intersection (recall [D6, Prop.
8.1]. Now the problem persists even for V a free divisor.

As a result of the theorem, we obtain a result for A(V )–equivalence, using the
relation between K(V )–versal unfoldings and A(V )–stable germs (analogous to that
for K and A due to Mather and Martinet as described earlier). Hence, an analogue
of Theorem 3 carries over to the A(V )–discriminant of an A(V )–stable map germs.
The A(V )–discriminant of a germ f0 : Cn, 0 → Cm, 0 is defined to be

DA(V )(f0) = {y ∈ Cm : there is an x ∈ f−1
0 (y) ∩ V such that

df0(x)(Tlog(V )(x)) 6= TyCm}

Theorem 8. Suppose that V, 0 ⊂ Cn, 0 is a free complete intersection and that
f0 : Cn, 0 → Cm, 0, n ≥ m, is A(V )–stable. Provided n −m < h(V ), the A(V )–
discriminant DA(V )(f0) is a free* divisor defined by

Derlog∗(DA(V )(f0)) = module of K(V )∗–liftable vector fields

There is a corresponding result for R+(V ) equivalence for germs f0 : Cn, 0 →
C, 0. The versal unfolding F (x, u) = (Fu(x), u) : Cn+q, 0 → C1+q, 0 of a germ
f0 under R+(V )–equivalence is also versal for A(V )–equivalence. For R+(V ), the
discriminant of F viewed as a map germ is

(3.2) {(y, u) ∈ C1+q : there is an x ∈ V , such that at x either F−1
u (y)

is not smooth or it is not transverse to V }

Thus, we obtain as a corollary.

Corollary 9. Suppose that V is a free complete intersection. Let f0 : Cn, 0 → C, 0
have finite R+(V )–codimension with versal unfolding F . If n− 1 < h(V ) , then the
R+(V )–discriminant of the map germ F is a free* divisor defined by the module of
K(V )∗–liftable vector fields.

The proofs of Theorems 7 and 8 and Corollary 9 will be given in §8.
In the absence of genericity of Morse type singularities, the module of K(V )–

liftable vector fields does not define a free divisor structure on the K(V )–discriminant.

Example 3.3. We reconsider Example 2.2, except for K(V )–equivalence. For
K(V )–equivalence, we have the same versal unfolding f(x, u1, u2) = (x + u1y +

u2, u1, u2) with K(V )–discriminant the u2–axis. Again, the vector field
∂

∂u2
is not

K(V )–liftable, although u1
∂

∂u2
is.

(38) Functions on Discriminants

As in (3.7), except we can alternatively consider the restriction f0|D(f1) under
K(D(f1))–equivalence where f1 is a stable germ and we only allow f0 to vary.
Provided n − p < hn(D(f1)), then the K(D(f1))–discriminants of the K(D(f1))–
versal unfolding of f0 is a free* divisor.
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Remark 3.4. For several examples with V a free divisor, the K(V )–discriminant
is actually a free divisor. This raises the question of whether simple conditions will
actually ensure that NK(V )un,e · F is a Cohen–Macaulay OCq ,0–module. Then,
provided V, 0 generically has Morse–type singularities in dimension n, we would
have the genericity of K(V )–liftable vector fields, yielding the freeness of K(V )–
discriminants.

4. CM–Reduction for KV2,V1
–equivalence

In this section we prove Theorem 5 by showing that the relative KV2,V1
–equivalence

for pairs has a CM–reduction K∗
V2,V1

. The arguments share similarities to those
given for KV –equivalence in §6 of Part II, so in places we merely outline certain
steps.

To define the associated extended tangent spaces to KV2,V1
and its unfolding

group KV2,V1 un, we define analogously to Derlog(V )

Derlog(V2, V1) = {ζ ∈ θp : ζ(I(Vi)) ⊂ I(Vi), i = 1, 2}.

Then, Derlog(V2, V1) = Derlog(V1) ∩ Derlog(V2) is a finitely generated OCp,0–
module and the associated sheaf is also coherent. Let {ζ1, . . . , ζr} be a set of
generators. Then, the extended tangent spaces are given by

TKV2,V1,e · f0 = OCn,0{
∂f0
∂x1

, . . . ,
∂f0
∂xn

, ζ1 ◦ f0, . . . , ζr ◦ f0}

and for an unfolding F (x, u) = (F̄ (x, u), u),

TKV2,V1,un,e · F = OCn+q,0{
∂F̄

∂x1
, . . . ,

∂F̄

∂xn

, ζ1 ◦ F̄ , . . . , ζr ◦ F̄}

We let (V2, V1) denote a free complete intersection pair as in Definition 3.2 so
V2 = Cp1 ×W2, and V1 = W1 ×W2 for a free complete intersection W2 and free
divisor W1. Let H2 : Cp2 , 0 → Ck, 0 denote the free defining equation for W2, and

let p = p1+p2. If {ζ
(j)
i } is a set of generators for Derlog(Wj), and H2 = (h1, . . . , hk)

defines W2, then applying [D6, Prop. 5.6] we obtain

(4.1) Derlog(V2, V1) = OCp,0{ζ
(1)
i ; ζ

(2)
j ;h`

∂

∂y
(1)
m

}

where i = 1, . . . , p1, j = 1, . . . , r, ` = 1, . . . , k, and m = 1, . . . , p1.
We then define the group

K∗
V2,V1

= KV2,V1
∩ K∗

V2

Here K∗
V2

is the subgroup of KV2
consisting of germs of diffeomorphisms of Cp×Cn, 0

which restricted to V2 × Cn are the restrictions of diffeomorphisms preserving the
fibers of H2 ◦ π for π the projection onto Cp (see [D6, §6]). K∗

V2,V1
can be seen to

be a geometric subgroup of A or K.

To compute the extended tangent spaces, we let {ζ1, . . . , ζp−k} denote {ζ
(1)
1 , . . . ,

ζ
(1)
p1
, ζ

(2)
1 , . . . , ζ

(2)
p2−k}, which is the union of the sets of generators of Derlog(W1) and

Derlog(H2). Then, we obtain for f0 the extended tangent spaces

(4.2) TK∗
V2,V1,e ·f0 = OCn,0{

∂f0
∂x1

, . . . ,
∂f0
∂xn

, ζ1 ◦f0, . . . , ζp−k ◦f0}+I(V2) ·θ(f0)
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and
(4.3)

TK∗
V2,V1,un,e · F = OCn+q,0{

∂F̄

∂x1
, . . . ,

∂F̄

∂xn

, ζ1 ◦ F̄ , . . . , ζp−k ◦ F̄} + I(V2) · θ(F̄ )

We denote the sheaves of OCn+q,0–modules associated to each of the normal spaces
by NKV2,V1,un,e · F and NK∗

V2,V1,un,e · F .

Proposition 4.1. For the free complete intersection pair (V2, V1):

(1) If n < h(V2), then, f0 : Cn, 0 → Cp, 0 has finite KV2,V1
–codimension iff it

has finite K∗
V2,V1

–codimension.

(2) For an unfolding F of f0,

(4.4) supp(NKV2,V1,un,e · F ) = supp(NK∗
V2 ,V1,un,e · F ).

Proof of proposition 4.1. First, f0 having finite KV2,V1
–codimension is equivalent to

supp(NKV2,V1,e · f0) = {0}. An analogous result holds for K∗
V2,V1

. Thus, 1) follows

from 2) applied to f0 as an unfolding on 0 parameters.
Since

T K∗
V1,V2,un,e ⊆ T KV1,V2,un,e

there is the inclusion ⊆ in (4.4). For the reverse inclusion, we verify that both sets
are defined by the failure of geometric transversality to the pair.

For example, consider supp(NK∗
V2 ,V1,un,e · F ). Because of the sheaf inclusion

I(V2) · Θ(F̄ ) ⊂ T K∗
V2,V1,un,e · F

a point (x, u) ∈ supp(NK∗
V2,V1,un,e · F ) implies F̄ (x, u) ∈ V2 = Cp1 ×W2.

If F̄ (x, u) = y ∈ V2, then (x, u) /∈ supp(NK∗
V2 ,V1,un,e · F ) is equivalent to

(4.5) Tlog(W1)(y) + Tlog(H2)(y) +DF̄ (x, u)(TxCn) = TyCp

However, the assumption n < h(V2) implies (see [D2, §2]) that

(4.6) TlogH2(x) = TlogW2(x) = TxS2

where S2 denotes the canonical Whitney stratum of W2 with F̄ (x, u) ∈ Cp1 × S2.
Then, using (4.6), we see (4.5) is equivalent to

(4.7) Tlog(W1)(y) + Tlog(W2)(y) +DF̄ (x, u)(TxCn) = TyCp

First, suppose y = (y1, y2) ∈ V1 with y2 ∈ S2. We apply the argument used
in Proposition 5.11 of Part II [D6] (except here W2 is a free complete intersection
rather than free divisor so we replace h2 there by h2, . . . , hk) to obtain

(4.8) Tlog(W1)(y1) ⊕Tlog(W2)(y2) ⊆ Tlog(V1)(y) ⊆ Tlog(W1)(y1) ⊕Ty2
S2

By (4.6) we have equality in (4.8) so (4.7) becomes

(4.9) Tlog(V1)(y) +DF̄ (x, u)(TxCn) = TyCp

Hence, F̄ (·, u) is transverse to V1 (and hence V2) at y.
If instead y ∈ V2\V1, then Tlog(W1)(y) = TyCp1 and

(4.10) Tlog(V2)(y) = TyCp1 ⊕ Tlog(W2)(y)

Thus, (4.5) is equivalent to

(4.11) Tlog(V2)(y) +DF̄ (x, u)(TxCn) = TyCp

Hence, F̄ (·, u) is algebraically transverse to V2 at (x, u) (and trivially to V1).
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We conclude (x, u) /∈ supp(NK∗
V2 ,V1,un,e · F ) is equivalent to F̄ (·, u) being alge-

braically transverse to both V1, and V2.
Similar arguments establish that supp(NKV2 ,V1,un,e ·F ) consists of points (x, u)

where F̄ (·, u) fails to be algebraically transverse to both V2 and V1. �

Then, we define the critical set in terms of these normal sheaves.

Definition 4.2. We define the KV2,V1
–critical set of F to be

CV2,V1
(F ) = supp(NKV2,V1,un,e · F ).

and analogously for the K∗
V2,V1

–critical set

Suppose f0 has finite KV2,V1
–codimension and n < h(V2). By proposition 4.1,

if F is an unfolding of f0, the critical sets CV2,V1
(F ) for KV2,V1

and C∗
V2,V1

(F ) for

K∗
V2,V1

agree and π|CV2 ,V1
(F ) is finite to one. By Grauert’s theorem, NKV2,V1

·F
def
=

π∗(NKV2 ,V1,un,e·F ) and NK∗
V2 ,V1

·F
def
= π∗(NK∗

V2,V1,un,e·F ) are coherent and are the
sheaves associated to the normal spaces for each group. Hence, by Proposition 4.1
they have common support the KV2,V1

and K∗
V2,V1

–discriminants of F . We conclude
that the KV2,V1

and K∗
V2,V1

–critical sets and discriminants of F are analytic subsets
of the same dimensions.

The proof of Theorem 1 is completed by proving the following proposition and
applying Theorem 2 of part II [D6].

Proposition 4.3. Let (V2, V1) be a free complete intersection pair. Suppose that
f0 : Cn, 0 → Cp, 0 has finite KV2,V1

–codimension with k ≤ n < hn(V1), h(V2). Let
F : Cn+q, 0 → Cp+q, 0 be a KV2,V1

–versal unfolding of f0. Then, NK∗
V2,V1

· F is

Cohen–Macaulay with supp(NK∗
V2 ,V1

· F ) = D∗
V2,V1

(F ) of dimension q − 1.

Remark . We require k ≤ n so that f−1
0 (V2) is a complete intersection.

Proof. Dividing both sides of (4.3) by I(V2) · θ(F̄ ) we obtain

(4.12) NK∗
V2,V1,un,e · F '

Op
X ,0/OX ,0{

∂F̄

∂x1
(x, u), . . . ,

∂F̄

∂xn

(x, u), ζ1 ◦ F̄ (x, u), . . . , ζp−k ◦ F̄ (x, u)}

By proposition 4.1, the OX ,0–module NK∗
V2,V1,un,e · F has support C∗

V2,V1
(F ) =

CV2,V1
(F ).

We then apply the argument similar to that given in proposition 6.12 of Part
II, applied instead to determinantal OX ,0–submodule on the complete intersection
X = F̄−1(V2) of codimension k. As NK∗

V2,V1,un,e · F is a quotient of Op
X ,0 by the

OX ,0–submodule generated by n+p−k generators, we may apply results of Eagon–
Northcott [EN], to conclude C∗

V2,V1
(F ) has codimension ≤ n + p − k − (p − 1) =

n− k + 1 in X so it has dimension ≥ n+ q − k− (n− k + 1) = q − 1 with equality
implying it is Cohen-Macaulay. As NK∗

V2,V1
· F is the sheaf associated to the push

forward of the normal space NK∗
V2,V1,un,e · F , the remainder of the proof for the

equality of dimensions follows as in the proof of proposition 6.12 of Part II using
again the parametrized transversality theorem and the geometric characterization
of DV2,V1

(F ) using KV2,V1
to prove dimD∗

V2,V1
(F ) = dimDV2,V1

(F ) = q− 1. Then,
both NK∗

V2,V1,un,e · F and NK∗
V2,V1

· F are Cohen–Macaulay as OX ,0–modules and
then so are the pushforwards as OCq ,0–modules. �
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5. KCp,V –Discriminants as Free Divisors

We have already established that K∗
Cp1 ,V1

is a Cohen–Macaulay reduction of
KCp1 ,V1

in §4. To prove Theorem 6, we will apply Theorem 1 of Part II. It is
sufficient to establish the next proposition.

Proposition 5.1. Let V1, 0 ⊂ Cp1 , 0 be a free divisor and let p = p1 + p2. Suppose
0 < n − p2 < hn(V1) and that V1, 0 has Morse–type singularities in dimension
n − p2. Then, versal unfoldings F of germs f0 : Cn, 0 → Cp, 0 have generically
K∗

Cp1 ,V1
–liftable vector fields.

To prove this proposition, we apply the criterion (1.3) to verify that KCp1 ,V1

generically has K∗
Cp1 ,V1

–liftable vector fields for the pair V1 ⊂ Cp1 ⊂ Cp. we view

Cp1 as stratified by Cp1\V1 and the canonical Whitney stratification of V1.
First, there is a local form of K∗

Cp1 ,V1
–equivalence in a neighborhood of each

y ∈ Cp1 , and the module of K∗
Cp1 ,V1

–liftable vector fields restricts by coherence to
the module of locally liftable vector fields for the local K∗

Cp1 ,V1
–equivalence for all

y in a neighborhood of 0. This establishes (1) of (1.3). Note we view K∗
Cp1 ,V1

as

a subgroup of K∗
Cp1 , and in the case of y ∈ Cp1\V1, K∗

Cp1 locally reduces to just
KCp1 –equivalence.

Next, provided that V1 generically has Morse–type singularities in dimension
n, so does Cp1 as the remaining stratum Cp1\V1 has Morse–type singularities in
dimension n by Example 7.7 of Part II. This establishes (2) of (1.3).

Third, to establish condition 3) of (1.3), we must show that there is a Zariski
open subset of jets which are algebraically transverse to V1 and with respect to a
local form of K∗

Cp1 ,V1
–equivalence at the target point y, the jet has K∗

Cp1 ,V1, e–codim
0. The verification in §4 that K∗

Cp1 ,V1
is a CM–reduction implies that germs have

K∗
Cp1 ,V1, e–codim = 0 iff KCp1 ,V1, e–codim = 0. As n < hn(V1) there is a Zariski open

subset of jets of germs algebraically transverse to the stratified set Cp1 (consisting
of Cp1 and the strata of V1). Hence, they are also algebraically transverse to V1,
and so have KCp1 ,V1, e–codim = 0. This is the desired Zariski open subset.

Finally, to establish the remaining condition (4) of (1.3) we must exhibit a Zariski
open subset W of the set of jets which are not algebraically transverse to (the
stratification of) Cp1 so that for each point y in a stratum of Cp1 of codimension
≤ n+ 1: i) any z ∈ W with target y is the jet of a Morse–type singularity and has
K∗

Cp1 ,V1, e–codim 1; ii) it is K∗
Cp1 ,V1

–equivalent to the local normal form (1.1) such

that for the versal unfolding F in (1.2), u
∂

∂u
is K∗

Cp1 ,V1
–liftable.

If y ∈ Cp1\V1, then we generically have Morse–type singularities for Cp1 in
all dimensions, which are then K∗

Cp1 ,V1
Morse–type singularities since the action

of K∗
Cp1 ,V1

at points y ∈ Cp1\V1 is just K∗
Cp1 –equivalence. We then observe that

K∗
Cp1 ,un = KCp1 ,un because in this case of smooth Cp1 , any KCp1 ,un–equivalence

restricted to Cp1 is also the restriction of a KH2,un–equivalence.
If instead y ∈ V1, locally we reduce to the case of y = 0 and consider f0 a

weighted homogeneous germ (for local coordinates such that V1 is also weighted
homogeneous). If f0 has K∗

Cp1 ,V1, e–codimension 1, then it is a Morse–type singu-

larity. As K∗
Cp1 ,V1, e–codim(f0) ≥ KV1,e–codim(f0), f0 also has KV1,e–codim = 1.

Otherwise, if KV1,e − codim(f0) = 0, then f0 would be algebraically transverse to
V1 at 0. Thus, using the definition of the K∗

Cp1 ,V1,e–normal space (4.2), K∗
Cp1 ,V1,e–

codim(f0) = 0, a contradiction.
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Next, we identify a Zariski open subset of the jets of Morse–type singularities
which are K∗

Cp1 ,V1
Morse–type singularities.

Proposition 5.2. Let V1, 0 ⊂ Cp1 , 0 be a free divisor with p = p1 + p2. For
f0 = (f01, f02) : Cn, 0 → Cp, 0, suppose that f01 is a Morse–type singularity for V1

with yp1
the exceptional weight coordinate (in the sense of [D5, Def. 4.28]). Second,

suppose that df02(0) : ker(df01(0)) → Cp2 is onto. Then, up to K∗
Cp1 ,V1

–equivalence,

we may assume V1, 0 = Cr ×V0, 0 for V0, 0 ⊂ Cp′

1 , 0, and with respect to coordinates
for which V0, 0 is weighted homogeneous, f0 has the form

(5.1) f0(x1, . . . , xn) = (0, . . . , 0, x1, . . . , xp′

1
−1,

n∑

i=p′

1
+p2

x2
i , xp′

1
, . . . , xp′

1
+p2−1)

Example 5.3. In the case of V = {0} ⊂ C, f0 = (
∑n

i=1+p2
x2

i , x1, . . . , xp2
), which

states exactly thatX = f−1
02 (0) = Cn−p2 , and f01|X is a standard Morse singularity.

Proof. Just as for the proof in Parts I and II of the normal form of Morse–type
singularities for KV –equivalence, we may first reduce to the case where TlogV1(0) = 0
so p′1 = p1. Then, since f01 is a Morse–type singularity for V1, 0 ⊂ Cp1 , 0, we may
apply KV1

–equivalence to put f01 into the normal form

(5.2) f01(x1, . . . , xn) = (x1, . . . , xp′

1
−1, ϕ(xp′

1
, . . . , xn)) where ϕ =

n∑

j=p′

1

x2
j

KV1
acting on Cp1 , 0 may be extended to act trivially on {0}×Cp2 . Thus, we may

view KV1
⊂ K∗

Cp1 ,V1
. Hence, both of these changes of coordinates are in K∗

Cp1 ,V1
.

Next, the condition that df02(0) : ker(df01(0)) → Cp2 is onto is preserved by the
KV1

–action; f02 is composed with the same diffeomorphism on Cn as f01. We still
denote this germ by f0 = (f01, f02). Next, by a linear change of coordinates on
(xp′

1
, . . . , xn), we may assume

(5.3) df02(0)(xp′

1
, . . . , xn) = (xp′

1
, . . . , xp′

1
+p2−1)

Under this linear change, ϕ has changed but it remains nondegenerate, and we still
denote it by ϕ. Then, a straightforward computation using (4.18) of Part I shows
that with f02 satisfying (5.3)

TK∗
Cp1 ,V1

· f0 = mn{
∂

∂y
(1)
1

, . . . ,
∂

∂y
(1)
p−1

} + (x1, . . . , xp−1){
∂

∂yp

}

+mn{
∂

∂y
(2)
1

, . . . ,
∂

∂y
(2)
p2

} + m2
n{

∂

∂yp

}

Then we can apply Mather’s geometric lemma (i.e. in the form of the addendum
of part I [D5]) to conclude that f0 is K∗

Cp1 ,V1
–equivalent to the normal form. �

We now assert: i) the condition in Proposition 5.2 that df02(0) : ker(df01(0)) →
Cp2 is onto defines a Zariski open subset W of the jets defining Morse–type singu-
larities; ii) that such singularities in normal form (5.1) have K∗

Cp1 ,V1,e − codim = 1;

and iii) the vector field u
∂

∂u
is K∗

Cp1 ,V1
–liftable. This will complete the claim in

Proposition 5.1.
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A straighforward calculation shows that a germ f0 which is a Morse–type sin-
gularity in normal form (5.1) has K∗

Cp1 ,V1,e–codim = 1. Also, the K∗
Cp1 ,V1

–versal
unfolding is given by

(5.4) F (x, u) = (F̄ (x, u), u) with F̄ (x, u) = f0(x) + (0, . . . , 0, u, 0, . . . , 0)

where u is in the p1–th coordinate. Then, iii) follows from the next Lemma.

Lemma 5.4. Suppose f0 is a Morse–type singularity in normal form (5.1). If the

exceptional weight of f01, wt(yp1
), is not zero, then u

∂

∂u
is K∗

Cp1 ,V1
–liftable.

Proof. Because
mp2

θ(f0) + Derlog(V1) ⊂ TK∗
Cp1 ,V1

it follows that TK∗
Cp1 ,V1

does contain the Euler vector field. Hence, liftability follows

exactly as for Lemma 4.10 in part I [D5]. �

Finally, we establish i). Let Σ1 denote the set 2–jets of germs which fail to be
algebraically transverse to V1 (= V1 × {0}).

Lemma 5.5. If V, 0 ⊂ Cp, 0 has K∗
Cp1 ,V1

Morse–type singularities, then W is a
Zariski open dense subset of Σ1 consisting of jets of K∗

Cp1 ,V1
Morse–type singulari-

ties.

Proof. The set U1 of 2–jets of germs f0 = (f01, f02) for which f01 is a Morse type
singularity for V1 is Zariski open and dense by Corollary 4.24 in Part I [D5]. As there
is at least one Morse–type singularity, n ≥ p− 1 so for f0 ∈ U1, dim ker(df01(0)) =
n− (p1 − 1) ≥ p2 . Thus, the set of f0 ∈ U1 for which df02(0) : ker(df01(0)) → Cp2

is onto is a Zariski open dense subset of Σ1. �

We conclude this section by indicating why there cannot be an analogous result
when Cp1 is replaced by another free complete intersection W2. The problem al-
ready arises for K∗

V . We consider the simplest complete intersection of the form
V = V1 × {0} ⊂ Cp+k for a free divisor V1.

Proposition 5.6. Suppose V = V1 × {0} ⊂ Cp+k, where V1, 0 ⊂ Cp, 0 is a free
divisor and k > 0. Then, for a versal unfolding of a Morse–type singularity in

normal form (1.2), u
∂

∂u
is not K∗

V –liftable.

Remark 5.7. If V, 0 ⊂ Cp, 0 is smooth, then for any unfolding F , TK∗
V,un,e · F =

TKV,un,e · F . Hence, as in the proof of (4) in Proposition 5.1, any KV –versal
unfolding F is K∗

V –versal, and all KV –liftable vector fields are also K∗
V –liftable.

Proof of Proposition 5.6. We consider V = V1 × {0} ⊂ Cp+k with V1 ⊂ Cp. Let
F (x, u) = (F̄ (x, u), u) be a versal unfolding of a Morse type singularity in the
normal form, where

F̄ (x, u) = (0, . . . , 0, x1, . . . , xp′ ,

r+p′∑

i=p′

x2
i + u, xn−k+1, . . . , xn).

Here there are r zeros and p′ = p− r, with (y1, . . . , yp+k) denoting coordinates for
Cp+k. Then, by [D6, Prop. 5.6], Derlog(V ) has generators

{
∂

∂yi

, 1 ≤ i ≤ r, ζi, 0 ≤ i ≤ p′ − 1},
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where ζ0 is the Euler vector field and

(5.5) {ζi(yp), 1 ≤ i ≤ p′ − 1} span mp′−1mod (yp′) + m2
p

Let M denote the submodule of TK∗
V,un · F generated by

{
∂

∂yi

, 1 ≤ i ≤ r,
∂

∂xi

, n− k + 1 ≤ i ≤ n}.

Then, letting mk denote the ideal of OCn,0 generated by xn−k+1, . . . , xn.

(5.6) TK∗
V,un,e · F/(M + mkθ(F̄ )) ' TKh,un,e · F1/(h · OCn−k+1,0{

∂

∂yp

})

with h the defining equation for V1 and F1(x, u) = (F̄1(x, u), u) where

F̄1(x, u) = (x1, . . . , xp′−1,

n−k+p′∑

i=p′

x2
i + u)

We next further divide the RHS of (5.6) by the OCn−k+1,0–submodule generated by

{
∂

∂yi

=
∂F̄1

∂xi

, 1 ≤ i ≤ p′ − 1,
∂F̄1

∂xi

, p′ ≤ i ≤ n− k}.

The quotient is isomorphic to

(5.7) O
Cp′

,0/OCp′
,0{h ◦ F̄1, ζi(yp) ◦ F̄1, 1 ≤ i ≤ p′ − 1}

where now (x1, . . . , xp′−1, u) denote coordinates for Cp′

. As V is not smooth, h ∈
m2

p. Lastly, let Q denote the quotient of (5.7) by m2
p′ . By the form of F , Q is

isomorphic to the quotient of O
Cp′ /m2

p′ by {ζi(yp) ◦ F̄1}, which spans a subspace of

dimension p′−1. If u
∂F̄

∂u
= u

∂

∂yp

∈ TK∗
V,un,e ·F , then u = 0 in Q. This would imply

by (5.5) that mp′ = 0 in Q, a contradiction. Thus, u
∂

∂u
is not K∗

V –liftable. �

6. Morse–type Singularities for V K–equivalence

We next turn to the situation of equivalences of germs f0 : Cn, 0 → Cm, 0 pre-
serving an analytic germ V, 0 ⊂ Cn, 0 in the source: V K, V A, and V R+ equivalences
in i) of Table 1. Before we are ready to prove these results in §7, we first identify the
Morse–type singularities for V K–equivalence. We do so by establishing a duality
between Morse–type singularities for V K–equivalence and KV –equivalence.

We compute the extended V K–tangent space for f0 by a computation analogous
to that for KV –equivalence in [D1]

(6.1) TV Ke · f0 = OCn,0{ζ1(f0), . . . , ζr(f0)} + mmθ(f0)

where Derlog(V ) is generated by ζ1, . . . , ζr.
Morse–type singularities for V K–equivalence are germs g : Cn, 0 → Cm, 0 which

have V Ke–codim = 1 and which are V K–equivalent to a germ f0 and for a common
choice of local coordinates, both f0 and V are weighted homogeneous.

In the special case that V = Cn, a Morse–type singularity for V K–equivalence
is a Morse–type singularity for K–equivalence, and hence is a standard Σn−p+1,0

singularity given by the normal form in Example 7.7 of Part II. Next we suppose
V, 0 ( Cn, 0.
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Then, as V K ⊂ K,

(6.2) Ke − codim(f0) ≤ V Ke − codim(f0) = 1

If Ke − codimf0 = 1 then, f0 is a Morse–type singularity for K–equivalence, and so
has corank 1. Also, since V Ke − codimf0 ≥ codim(df0(Tlog(V )(0)), we must have
dim (df0(Tlog(V )(0)) ≥ m− 1. If it were m, then f0 would have V Ke − codim = 0.
Thus, the dimension is m − 1, and either corank(f0) = 1 or f0 is the germ of a
submersion. We determine which of the last two conditions occur.

Next, we perform a preliminary reduction modelled on the proof of Lemma
4.12 in Part I (or see Lemma 7.3 in Part II). There is a weighted homogeneous

change of coordinates so V = Cr × V0 for V0, 0 ⊂ Cn′

with Tlog(V0)(0) = 0 with
both V0 and f0 weighted homogeneous. If Derlog(V0) is generated by ζ1, . . . , ζs,

then Derlog(V ) is generated by {
∂

∂x1
, . . . ,

∂

∂xr

, ζ1, . . . , ζs}. Also, ζi ∈ mnθn so

ζi(f0) ∈ mnθ(f0). Hence, df0(Tlog(V )(0)) is spanned by {
∂f0
∂x1

, . . . ,
∂f0
∂xr

}. We can

find W ⊂ Cr such that df0|W induces an isomorphism W ' df0(Tlog(V )(0)). There
is a complementary subspace K containing ker(df0(0)). In the case corank(f0) = 1,
then K = ker(df0(0)), while if f0 is the germ of a submersion, ker(df0(0)) has
codimension 1 in K. Define the map ψ : Cn, 0 → Cn, 0 by ψ(w, v) = (f0(w), v) for
w ∈ W and v ∈ K. Then, ψ is a germ of a diffeomorphism, preserves V = Cr ×V0,
and f0 ◦ψ−1(x1, . . . , xn) = (x1, . . . , xm−1, g(x1, . . . , xn)). We may further subtract
functions in the ideal generated by x1, . . . , xm−1 from g, and obtain a weighted
homogeneous change of coordinates up to V K–equivalence which leaves g in the
form f1(xm, . . . , xn).

Thus, after applying V K–equivalence, we obtain for a choice of weights for the
coordinates: both V and f0 weighted homogeneous, V = Cr ×V0 with V0, 0 ⊂ Cn′

,
Tlog(V0)(0) = 0, and f0 has the preliminary form

(6.3) f0(x1, . . . , xn) = (x1, . . . , xm−1, f1(xm, . . . , xn))

If V ( Cn and corank(f0) = 1, then we claim such germs cannot be Morse–type
singularities for V K–equivalence.

Lemma 6.1. If V, 0 ( Cn, 0, then a Morse–type singularity f0 : Cn, 0 → Cm, 0 for

V K–equivalence is a germ of a submersion.

Proof. By a change of coordinates, we may assume f0 has the normal form (6.3).
If f0 has corank 1, then by (6.2), we may assume f0 is a Morse–type singularity for
K–equivalence so f1 ∈ m2

n−m+1 with nondegenerate Hessian. If f0 has the normal
form (6.3), we may suppose W = Cm−1. From the form of TV Ke · f0 in (6.1),
projection onto the last component of θ(f0) induces an isomorphism

(6.4) NV Ke · f0 ' OCn−m+1,0/(
∂f1
∂xm

, . . . ,
∂f1
∂xr

, ζ1(f1), . . . , ζs(f1))

where Cn−m+1 denotes {0} × Cn−m+1. However, ζi ∈ mnθn implies ζi(f1) ∈ m2
n.

Also
∂f1
∂xi

∈ mn, so by (6.4)

(6.5) dimNV Ke · f0 ≥ 1 + dim C(mn−m+1/(〈
∂f1
∂xm

, . . . ,
∂f1
∂xr

〉 + m2
n))

Hence, if r < n, then V Ke − codimf0 ≥ 2. Thus, r = n and V = Cn. �
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Thus, for V K–equivalence with V ( Cn, the Morse–type singularities are germs
of submersions. We now establish a dual correspondence between KV and V K–
equivalence for such germs.

Lemma 6.2 (Dual Correspondence for KV and V K). Let f0 : Cn, 0 → Cm, 0 be
a germ of a submersion, so X0 = f−1

0 (0) is smooth. Let g0 : Cn−m, 0 → Cn, 0 be
a germ of an immersion which parametrizes X0. If V, 0 ⊂ Cn, 0, then there is a
natural isomorphism of OX0,0–modules

(6.6) NV Ke · f0 ' NKV,e · g0

Proof. The isomorphism is induced by extending ξ ∈ θ(g0) to a ξ̃ ∈ θn and sending

it to ξ̃(f0)|X0
To see that this is well defined and induces an isomorphism, we change

coordinates so we may assume that f0 is the projection π : Cn → Cm = {0} × Cm

and g0 is the immersion i : Cn−m = Cn−m × {0} ↪→ Cm. Let Derlog(V0) be
generated by ζ1, . . . , ζs, and express ζi = ζi1 + ζi2 relative to the decomposition
Cn = Cn−m ⊕ Cm. Then, ζi(π) = ζi2(π) = ζi2, so

(6.7) NV Ke · π ' OCn−m,0{
∂

∂xn−m+1
, . . . ,

∂

∂xn

}/OCn−m,0{ζi2}

Also,
∂i

∂xj

=
∂

∂xj

for 1 ≤ j ≤ n−m, and π ◦ ζj ◦ i = ζj2. Hence, we likewise obtain

(6.8) NKV,e · i ' OCn−m,0{
∂

∂xn−m+1
, . . . ,

∂

∂xn

}/OCn−m,0{ζi2}

We note (6.7) and (6.8) are isomorphic via the map ξ ∈ θ(i) 7→ ξ̃(π)|Cn−m , which is

independent of the extension of ξ to ξ̃ on Cn. �

Remark . Even in the case n = m, this is still formally correct provided we allow
maps C0 = {0} → Cn, 0.

Example 6.3. If C3 has coordinates (x, y, z) and V, 0 ⊂ C3, 0 is the xy–plane,
then the inclusion of the surface z = x2 − y2 is a Morse–type singularity for KV –
equivalence, and the function f0(x, y, z) = z− (x2 −y2) is a Morse–type singularity
for V K–equivalence as in figure 1.

V

f   (0)
0
-1

Figure 1. Morse Type Singularity f0 for V K–equivalence for V smooth

Lemma 6.2 allows us to move between Morse–type singularities for KV and V K–
equivalence. If V, 0 ⊂ Cn, 0 has a Morse–type singularity f0 : Cn, 0 → Cm, 0 for
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V K–equivalence, then by Lemma 6.2, V, 0 has Morse–type singularities for KV –
equivalence in dimension n −m, and hence in all allowable dimensions by Corol-
lary 7.4 of Part II. Conversely, suppose V, 0 has Morse–type singularities for KV –
equivalence in all allowable dimensions. Given m < n, there is for appropriate local
coordinates a Morse type singularity for KV –equivalence given as in the normal
form (1.1).

(6.9) g0(x1, . . . , xn−m) = (0, . . . , 0, x1, . . . , xn′−1, Q(xn′ , . . . , xn−m))

where Q(xn′ , . . . , xn−m) =

n−m∑

j=n′

x2
j

We can modify the normal form so it is still a Morse type singularity except it is a
now the germ of an immersion

g1(x1, . . . , xn−m) = (0, . . . , 0, xn′ , . . . , xn−m, x1, . . . , xn′−1, Q(xn′ , . . . , xn−m))

Note that we will have m− 1 “0’s”. Then, we obtain a Morse–type singularity for

V K–equivalence for the same coordinates as

(6.10) f0(y1, . . . , yn) = (y1, . . . , ym−1, yn −
r∑

j=m

y2
j )

Next, we observe that (6.10) is the general normal form for Morse–type singularities
for V K–equivalence.

Lemma 6.4 (Local Normal Form). Let f0 : Cn, 0 → Cm, 0 with n ≥ m be a
Morse–type singularity for V, 0 ( Cn, 0. Then, up to V K–equivalence, we may
assume V, 0 = Cr ×V0, 0 for V0, 0 ⊂ Cn′

, 0 with Tlog(V0)(0) = 0, and with respect to
coordinates for which V0, 0 and f0 are weighted homogeneous, f0 is given by

(6.11) f0(x1, . . . , xn) = (x1, . . . , xm−1, xn −
r∑

j=m

x2
j ))

(here xn is a coordinate for Cn′

so that {xn, ζ1(xn), . . . , ζs(xn)} generate mn′).

Proof. We have already established the preliminary normal form in (6.3). We may

choose coordinates for Cn′

so that
∂f1
∂xn

(0) 6= 0 but
∂f1
∂xj

(0) = 0 for j = m, . . . , n−1.

Hence, absorbing the coefficient of xn, f1 = xn + h with h ∈ m2
n−m+1. Thus,

TV Ke · f0 contains

OCn,0{
∂

∂y1
, . . . ,

∂

∂ym−1
} + mm−1OCn,0{

∂

∂ym

}

Thus, projecting along this subspace onto OCn−m+1,0{
∂

∂ym

} ' OCn−m+1,0, we ob-

tain the image of TV Ke · f0 to be

〈xn,
∂h

∂xm

, . . . ,
∂h

∂xr

, ζ1(xn), . . . , ζs(xn)〉 mod (m2
n−m+1)

where xn is obtained from f1.
Hence, f0 will have V Ke–codimension 1 exactly when

(6.12) xn,
∂h

∂xm

, . . . ,
∂h

∂xr

, ζ1(xn), . . . , ζs(xn) span mn−m+1 mod (m2
n−m+1)
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Since xn, ζ1(xn), . . . , ζs(xn) ∈ mn′ , and n − m + 1 = n′ + (r − (m − 1)), (6.12)

will hold exactly when xn, ζ1(xn), . . . , ζs(xn) spans mn′ and
∂h

∂xm

, . . . ,
∂h

∂xr

spans

mn−m+1/(mn′ + m2
n−m+1).

Then, by Nakayama’s Lemma,

(6.13) TV K · f0 = (x1, . . . , xm−1, xr+1, . . . , xn)OCn,0{
∂

∂ym

}

+ mnOCn,0{
∂

∂y1
, . . . ,

∂

∂ym−1
} + m2

nOCn,0{
∂

∂ym

}

All such germs f ′
0 in the preliminary form (6.3) with the same 1–jet have the same

tangent space. Thus, we may apply Mather’s geometric Lemma to conclude that
f0 is V K–equivalent to its linearization, establishing the lemma. �

Remark . If n = m, then the Morse–type singularity for V = Cn−1 (so r = n− 1)
is f0 = id, which has V Ke − codim = 1. The nontrivial deformation of f0 moves
the image of V off 0.

Having established the normal form, the arguments given in §4 of Part I allow
us to deduce the analogues of Corollary 7.4 of Part II.

Corollary 6.5.

(1) If V, 0 ⊂ Cp, 0 has a Morse type singularity f0 : Cn, 0 → Cm, 0 for V K–
equivalence, then it has Morse–type singularities for V K–equivalence for all
“allowable dimensions”m ≤ r + 1 where r = dim(Tlog(V )0).

(2) Suppose V, 0 = Cr × V0, 0 is weighted homogeneous with V0, 0 ⊂ Cn′

, 0 and
(Tlog(V0)(0)) = (0). Then V has Morse type singularities in all allowable

dimensions iff there is a weighted hyperplane in Cp′

which is transverse to
the orbits of Aut1(V0) in a punctured neighborhood of 0. Here Aut1(V0)
denotes the group of linearized automorphisms of V0.

(3) If V, 0 ⊂ Cn, 0 has Morse type singularities for V K–equivalence, then there
is a Zariski open dense subset of Σn−m consisting of jets of Morse–type
singularities (here Σn−m denotes the 2-jets of germs of submersions f0 for
which ker(df0(0)) is not algebraically transverse to V at 0).

Also, because of the correspondence between Morse–type singularities for KV

and V K–equivalence, we also obtain the analogues of Proposition 7.5 of Part II
for products and the version of Lemma 4.29 of Part I for product unions. Also,we
have an analogue of Lemma 7.8 of Part II. We define for f0 in normal form (6.11)
the exceptional weight type to be wt(yn) which is the same as for g0. The versal
unfolding F of f0 given by

(6.14) F (x, u) = (F̄ (x, u), u) with F̄ (x, u) = f0(x) + (0, . . . , 0, u)

Lemma 6.6. For the Morse–type singularity in the normal form (6.11), with
nonzero exceptional weight type, with versal unfolding F given by (6.14), the vector

field u
∂

∂u
is V K–liftable.
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7. Equivalence of Mappings while Preserving a Free Divisor

We now apply our analysis of Morse–type singularities for V K–equivalence to
prove Theorems 1 - 4.

Let V, 0 ⊂ Cn, 0 a free divisor. In order to prove Theorem 1 we will still use
the strategy (1.3) even though we consider V K instead of KV . To apply it, we will
establish the following Propositions.

Proposition 7.1. Suppose that V, 0 ⊂ Cn is a free divisor. If 0 ≤ n−m < hn(V ),
then the group V K acting on germs f0 : Cn, 0 → Cm, 0 is Cohen–Macaulay.

Proposition 7.2. Under the same assumptions as Proposition 7.1, suppose that
moreover V generically has Morse–type singularities for KV –equivalence in dimen-
sion n−m. Then, a V K–versal unfolding F of a germ f0 : Cn, 0 → Cm, 0 generically
has V K–liftable vector fields.

Using these propositions, we can apply Theorem 1 of Part II to immediately
deduce Theorem 1.

Proof of Proposition 7.1. We first check that V K has geometrically defined discrim-
inants. The group V K induces a local action at points x near 0 which is again of the
same form (V,x)K. Also, the V K–discriminant for an unfolding F consists of param-

eter values u ∈ Cq such that eitherXu = F−1
u (0) is not smooth or it is, but it fails to

be transverse to V . We note V K–liftable diffeomorphisms lift to V Keq–equivalences
which preserve these properties (where V Keq–equivalences are V K–equivalences of
unfoldings which also allow change of coordinates in the parameters in Cq). Thus,

V K has geometrically defined discriminants.
Second, we apply an argument using Eagon–Northcott [EN] analogous to that

in Proposition 4.3. The normal space NV Kun,e · F , viewed as an OX ,0-module,
where X = F̄−1(0) has pushforward which is Cohen–Macaulay and whose support
is the discriminant D

V K(F )) = π(C
V K(F )) of codimension 1. Thus, V K is Cohen–

Macaulay. �

Proof of Proposition 7.2. We will apply the criterion (1.3), even though we work
with V K instead of a subgroup of KV . Also, by proposition 7.1, V K itself is Cohen–
Macaulay, so we apply the criterion to V K rather than a CM-reduction.

By the above remarks (1) of (1.3) is satisfied. Next, by Lemma 6.2, the gener-
icity of Morse type singularities for V in dimension n −m implies that all points
x on the canonical Whitney strata of V of codimension ≤ n − m + 1 there are
Morse–type singularities of nonzero exceptional weight type f0 : Cn, x→ Cm, 0 for

(V,x)K–equivalence. Second, just as for KV –equivalence, we can still perturb a finite
codimension germ f0 so it only has one V K–critical point on V and at that point it
is a Morse–type singularity. This establishes (2) of (1.3) and allows us to consider
the criterion for V K–equivalence.

For (3) of (1.3) we observe that f0 : Cn, 0 → Cm, 0 has V Ke–codimension 0
iff f0 is the germ of a submersion (i.e. Ke–codimension 0) and X0 = f−1

0 (0) is
algebraically transverse to V at 0.

Lastly, any stratum of codimension > n−m+ 1 lies in the closure of a stratum
of codimension = n −m + 1. Hence, by Corollary 6.5, we have the Zariski open

subset W of Σn−m. Also, by Lemma 6.6, for the normal form (6.11), u
∂

∂u
is liftable.

Thus, (4) of (1.3) follows.
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Hence, by Proposition 1.1 applied to V K (whose proof applies using the above
observation) we deduce the genericity of V K–liftable vector fields. �

Then, Theorem 2 follows from Theorem 1, using the following Lemma relating

V A–stable germs and V K–versal unfoldings.

Lemma 7.3. Suppose that V, 0 ⊂ Cn is a free divisor, and that f0 : Cn, 0 → Cm, 0
is V A–stable. Then, the unfolding F (x, u) = (f(x) − u, u) : Cn+m, 0 → C2m, 0 is

V K–versal and the V A–discriminant of f0 equals the V K–discriminant of F .

Proof. The proof is very similar to that of Mather [M-IV] or Martinet [Mar] for
ordinary A and K equivalence. By the versality theorem, V A–stability under de-
formations, which is equivalent to f0 being its own versal deformation, is equivalent
to infinitesimal V A–versality.

(7.1) OCn,0{ζ1(f0), . . . , ζn(f0)} + OCm,0{
∂

∂y1
, . . . ,

∂

∂ym

} = θ(f0)

where {ζ1, . . . , ζn} generate Derlog(V ). By the preparation theorem, this is equiv-
alent to

(7.2) OCn,0{ζ1(f0), . . . , ζn(f0)} + mmθ(f0) + 〈
∂

∂y1
, . . . ,

∂

∂ym

〉 = θ(f0)

which (since
∂F̄

∂ui

=
∂

∂yi

) is the infinitesimal condition that F is V K–versal.

Finally, we verify that the discriminants agree. First, X = F̄−1(0) is smooth
and π : X → Cm is A–equivalent to f0 via a diffeomorphism ϕ(x) = (x, f0(x))
sending V to V ∩ X . Then, u ∈ D

V K(F ) if either Xu = F−1
u (0) = X ∩ (Cn × {u})

is not smooth or it is, but is not transverse to V . Equivalently, u is a critical
point of π|X or it is a regular point but π−1(u) ∩ X is not transverse to V × Cm.
Under the equivalence with f0, this is the condition that y(= u) ∈ D

V A(F ), and
conversely. �

Furthermore, Corollary 3 is an immediate consequence of Theorem 2.

Proof of Theorem 4. Lastly, we turn to the V A–bifurcation set for germs f0 :
Cn, 0 → Cp, 0. Let F (x, u) = (F̄ (x, u), u) : Cn+q, 0 → Cp+q , 0 denote the V A–
versal unfolding of f0. Then, the V ×CqA–discriminant D

V ×CqA(F ) of F , viewed as
a germ, is a free divisor by Theorem 2.

We can repeat the reasoning in [D7] to show that the results of that paper
apply equally well to V A–equivalence and its relation with KD–equivalence where
D = D

V A(F ). For a germ f0 : Cn, 0 → Cp, 0 and an analytic germ V, 0 ⊂ Cn, 0,
let the V A–versal unfolding again be F : Cn+q, 0 → Cp+q , 0. In particular, if
g0 : Cp, 0 → Cp+q , 0 denotes the inclusion, then any unfolding f of f0 is obtained
up to V A–equivalence as the pullback of F by an unfolding g of g0. Moreover, we
conclude the following.

Theorem 7.4. In the preceding situation (without requiring that V be a free divi-
sor),

(1) f0 has finite V A–codimension iff g0 has finite KD–codimension;
(2) if either is finite, then there is the isomorphism of OCp,0–modules

NV Ae · f0 ' NKD,e · g0

Let g be an unfolding of g0, with pullback of F denoted by f .
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(3) If g is KD–trivial unfolding (resp. family) then f is V A–trivial unfolding
(resp. family);

(4) g is KD–versal iff f is V A–versal.

Then, it follows that the V A–bifurcation set of F is the KD–discriminantDD(G),
where G is the KD–versal unfolding of g0. Now, in our case, F is V ×CqA–stable.
Moreover, 0 < n − p < hn(V × Cq) = hn(V ) (in addition V × Cq has Morse
type singularities in dimension n − p, which is equivalent to V having Morse type
singularities in dimension n − p). Hence, by Theorem 2, the V ×CqA–discriminant
of F in Cp+q is a free divisor.

The assumption that f0 belongs to the V A–distinguished bifurcation class, to-
gether with Theorem 7.4 implies: i) the strata of DD(G) correspond to the (V,x)K–
classes; ii) the strata of codimension ≥ p + 1 belong in the closure of strata of
codimension p + 1; strata of codimension ≤ p + 1 generically have Morse type
singularities; and the strata of DD(G) of codimension ≤ p are made up of (V,x)K–
multigerm classes, and are hence holonomic. Thus, we can apply Theorem 1 of
Part I to conclude that DD(G) = B

V A(F ) is a free divisor defined by the module
of KD (i.e. V ×CqA)–liftable vector fields. �

8. Germs on a Fixed Free Complete Intersection

The proofs of Theorems 7, 8 and Corollary 9 follow arguments similar to those
given already, and make use of the results of §4 and 5. This is why we have
postponed the proofs until now.

We begin by defining a CM–reduction for K(V ). We first assume V, 0 ⊂ Cn, 0 is
a free complete intersection of dimension k with free defining equation h : Cn, 0 →
Cn−k, 0, so that Derlog(h) is freely generated by {ζ1, . . . , ζk}. We let K(V )∗ denote
the subgroup of K(V ) for which the diffeomorphism of Cn, 0 restricted to V is a
restriction of a diffeomorphism preserving the level sets of h. This again gives a
geometric subgroup using the arguments in [D4, §9-11]. Then, as in [D4, §9-11], we
compute for f0 : Cn, 0 → Cp, 0,

(8.1) TK(V )∗ · f0 = OCn,0{ζ1(f0), . . . , ζk(f0)} + (h∗mn−k + f∗
0 mp)θ(f0)

If F : Cn+q, 0 → Cp+q , 0 is a K(V )∗–versal unfolding of f0, it is also a K(V )–versal
unfolding. Then, the unfolding tangent space is given by

(8.2) TK(V )∗un,e · F = OCn,0{ζ1(F̄ ), . . . , ζk(F̄ )} + (h∗mn−k + F̄ ∗mp)θ(F̄ )

We let X = F̄−1(0) which is a complete intersection algebraically transverse to
V × Cq . Hence, X = X ∩ (V × Cq) is still a complete intersection of dimension
k + q − p. Then, by (8.2) the extended normal space for the unfolding is given by

(8.3) NK(V )∗un,e · F ' O
(p)
X ,0/OX ,0{ζ1(F̄ ), . . . , ζk(F̄ )}

The critical sets CK(V )(F ) for K(V ), and CK(V )∗(F ) for K(V )∗ are given by

CK(V )(F ) = supp(NK(V )un,e · F ) and CK(V )∗(F ) = supp(NK(V )∗un,e · F )

Then, there is the analogue of Proposition 4.1.

Proposition 8.1. For a free complete intersection V : If n− p < h(V )

(1) i) f0 : Cn, 0 → Cp, 0 has finite K(V )–codimension iff it has finite K(V )∗–
codimension.
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(2) ii) For an unfolding F of f0,

(8.4) CK(V )(F ) = CK(V )∗(F )

The proof that is analogous to that of Proposition 4.1.
That the K(V )–discriminant is geometrically defined is straightforward, and ap-

plying Eagon–Northcott as in Proposition 4.3 so we conclude that K(V )∗ is a CM-
reduction of K(V ). We may apply Theorem 2 of Part II to conclude DK(V )(F ) is a
free* divisor defined by the module of K(V )∗–liftable vector fields.

Having proven Theorem 7, we can obtain Theorem 8 exactly as we obtained
Theorem 2 from Theorem 1 by applying an analogue of Lemma 7.3.

Lemma 8.2. Suppose that V, 0 ⊂ Cn is a free divisor, and that f0 : Cn, 0 →
Cp, 0 is A(V )–stable. Then, the unfolding F (x, u) = (f(x) − u, u) : Cn+p, 0 →
C2p, 0 is K(V )–versal and the A(V )–discriminant of the germ f0 equals the K(V )–
discriminant of the unfolding F .

Finally Corollary 9 follows as explained in §3.

9. Discussion of the Consequences for Understanding Discriminants

The results obtained in this paper, including those from the earlier parts I and
II which generalize many earlier results, give a broad view of how generally dis-
criminants and bifurcation sets for various equivalences are free divisors. Several
questions raised by the referee include the following. Do the free divisors which
arise for the additional equivalences really give new free divisors? Can we deter-
mine based on the properties of a free divisor whether it arises as a discriminant
for a specific equivalence? Do sporadic free divisors which have been identified by
adhoc methods arise as discriminants?

In fact, we are a long way from answering in any effective way these questions.
However, we can draw a few conclusions.

For KV –equivalence with V the simplest free divisor {0} ⊂ C, resp. free com-
plete intersection {0} ⊂ Cp, the KV –discriminants are discriminants for isolated
hypersurface singularities, resp. isolated complete intersection singularities, which
are free divisors. Next, taking V to be these divisors, the KV –discriminants are the
bifurcation sets for A–versal unfoldings, and are free divisors provided we are in
the distinguished bifurcation class. This progression from {0} to discriminants of
stable unfoldings to bifurcation sets represents increasingly complicated structure
(at least by measures such as topological interpretation of codimension [DM] and
higher multiplicities [D2]). Equivalences which introduce the behavior relative to
these free divisors should also further increase the complexity.

While certain equivalences such as V K–equivalence of germs which are submer-
sions will have the same discriminants as the KV –equivalence of a corresponding
immersion germ by the correspondence of §6, Arnold has shown that simple bound-
ary singularities give bifurcation sets associated to Weyl groups and Coxeter groups
other than the A, D, E groups associated to the simple hypersurface singularities,
indicating new complexity.

Although there is considerable knowledge about the local structure of discrim-
inants for stable germs in low codimension, there is as yet no systematic method
to characterize the discriminants belonging to a given equivalence, nor to charac-
terize the complexity. Now that we have seen the abundance of free divisors, these
questions are important ones to consider.
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