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Abstract. For a germ of a variety V , 0 ⊂ CN , 0, a singularity V0 of “type V”
is given by a germ f0 : Cn, 0 → CN , 0 which is transverse to V in an appropriate
sense so that V0 = f−1

0
(V). If V is a hypersurface germ, then so is V0, and by

transversality codimCsing(V0) = codimCsing(V) provided n > codimCsing(V).
So V0, 0 will exhibit singularities of V up to codimension n.

For singularities V0, 0 of type V , we introduce a method to capture the
contribution of the topology of V to that of V0. It is via the “characteristic co-
homology” of the Milnor fiber (for V , 0 a hypersurface), and complement and
link of V0 (in the general case). The characteristic cohomology of the Milnor
fiber AV (f0;R), respectively of the complement CV (f0;R) are subalgebras of
the cohomology of the Milnor fibers, respectively the complement, with coef-
ficients R in the corresponding cohomology. For a fixed V , they are functorial
over the category of singularities of type V . In addition, for the link of V0

there is a characteristic cohomology subgroup BV (f0,k) of the cohomology

of the link over a field k of characteristic 0. The cohomologies CV (f0;R) and
BV (f0,k) are shown to be invariant under the KV -equivalence of defining germs
f0, and likewise AV (f0;R) is shown to be invariant under the KH -equivalence
of f0 for H the defining equation of V ,0.

We specialize to the case where V denotes any of the varieties of singular
m × m complex matrices which may be either general, symmetric or skew-
symmetric (with m even). For these varieties we have shown in another paper
that their Milnor fibers and complements have compact “model submanifolds”
for their homotopy types, which are classical symmetric spaces in the sense of
Cartan. As a result, it follows that the characteristic subalgebras AV (f0;R)
and CV (f0;R) are images of exterior algebras (or in one case a module on two
generators over an exterior algebra). We extend these results to general m× p

complex matrices.
We then give a geometric criterion involving “vanishing compact models”

that detects when either of the functorial characteristic cohomologies contain
a specific exterior subalgebra on ℓ generators and for the link that it contains
an appropriate truncated and shifted version of the subalgebra. For matrix
singularities we apply the geometric detection criterion by introducing a special
type of “kite map germ of size ℓ”based on a given flag of subspaces. The
general criterion which detects such nonvanishing characteristic cohomology
is then given in terms of the defining germ f0 containing such a kite map
germ of size ℓ. Furthermore we use a restricted form of kite spaces to give a
cohomological relation between the cohomology of local links and the global
link.

Lastly we begin to indicate what form the cohomology of the Milnor fiber
takes as a module over the characteristic subalgebra. We consider several other
classes of examples, such as generic hyperplane and hypersurface arrangements,
to begin to understand the form this decomposition takes.

Preliminary Version

Introduction

For a germ of a hypersurface V0, 0 ⊂ Cn, 0 with a nonisolated singularity, a
result of Kato-Masumoto [KM] states that the connectivity of the Milnor fiber may
decrease by r = dim Csing(V0). Thus, it may have nonzero (co)homology Hj(V0)
in dimension n − 1 − r ≤ j ≤ n − 1. For very low dimensional singular sets
of dimension ≤ 2, with special forms for sing(V0) and the transverse types of the
defining equation f0 on sing(V0), the work of Siersma and coworkers Pellikan, Tibar,
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Nemethi, Zaharia, Van Straten, etc., have determined the topological structure of
the Milnor fibers (see e.g. the survey [Si]). However, very little is known about the
topology for hypersurfaces with higher dimensional singular sets. We consider in
this paper how we may introduce in such a situation more information about the
topology of a singularity V0, which is based on a “universal singularity” V , even
when it is highly nonisolated. This will be done by identifying how topological
properties of V are inherited by V0.

We give a general formulation for the category of singularities V0 of “type V”
for a fixed germ of a variety V , 0 ⊂ CN , 0 defined as V0 = f−1

0 (V) for a germ
f0 : Cn, 0 → CN , 0 (which for a subcategory is transverse to V in an appropriate
sense). If V is a hypersurface germ, then so is V0. If V , 0 is a highly singular germ
and n > codimCsing(V), then by transversality, V0, 0 will also exhibit singularities
of V up to codimension n, and hence also in general be highly singular. Nonetheless
we define the characteristic cohomology for the Milnor fiber (for the hypersurface
case), and the complement and link of V0 (in the general case).

The “characteristic cohomology algebra” of the Milnor fiber of V0 is defined

as AV(f0;R) = f̃0
∗
(H∗(Fw ;R), for f̃0;Vw → Fw the induced map of Milnor

fibers. Likewise, the “characteristic cohomology algebra” of the link is defined to be
CV(f0;R) = f∗

0 (H
∗(CN\V ;R) (which is understood in the sense of local cohomol-

ogy). Both of these are shown to be well-defined and functorial over the category
of singularities of type V for a fixed singularity V . For a field k of characteristic 0,
the “characteristic cohomology (subspace)” of the link, BV(f0;k) is defined to be
the Alexander dual of the Kronecker dual of CV(f0;k). It is not functorial, but is
natural with respect to a relative form of the Gysin homomorphism.

We show that AV(f0;R) is invariant, up to an algebra isomorphism of the co-
homology of the Milnor fiber, under KH -equivalence of f0 (i.e. K-equivalence of f0
preserving the defining equation H of V , see e.g. [DM]). Also, both CV(f0;R) and
BV(f0;k) are invariant under KV -equivalence of f0, up to an algebra isomorphism
of the cohomology of the complement, resp. the isomorphism of the cohomology
group of the link. This will allow us to give a structural form for the cohomology
of the Milnor fiber (in the hypersurface case) and of the complement (for general
V), as modules over corresponding “characteristic subalgebras”. Furthermore, we
give results about the exact form of these characteristic subalgebras.

We first specialize to the case where V denotes any of the varieties of singular
m×m complex matrices which may be either general, symmetric or skew-symmetric
(with m even). These give rise to “matrix singularities” V0 of any of the three
types. For matrix singularities the characteristic cohomology will give the analogue
of characteristic classes for vector bundles (as e.g. [MS]). For comparison, a vector
bundle E → X over CW complex X is given by map f0 : X → BG for G the struc-
ture group of E (e.g. On, Un, Spn, SOn, etc.). It is well-defined up to isomorphism
by the homotopy class of f0. Moreover the generators of H∗(BG;R), for appro-
priate coefficient ring R pull-back via f∗

0 to give the characteristic classes of E; so
they generate a characteristic subalgebra of H∗(X ;R). The nonvanishing of the
characteristic classes which then give various properties of E. Various polynomials
in the classes correspond to Schubert cycles in the appropriate classifying spaces.

We will give analogous results for categories of matrix singularities of the various
types. Homotopy invariance is replaced by invariance under the actions of the
groups of diffeomorphisms KH or KV . For these varieties we have shown in another



4 JAMES DAMON

paper [D3] that they have compact “model submanifolds” for the homotopy types
of both the Milnor fibers and the complements and these are classical symmetric
spaces in the sense of Cartan. As a result, it will follow that the characteristic
subalgebra is the image of an exterior algebra (or in one case a module on two
generators over an exterior algebra) on an explicit set of generators.

We give a “detection criterion” for identifying in the characteristic sublgebra an
exterior subalgebra on pull-backs of ℓ specific generators of the cohomology of the
corresponding symmetric space. It is detected by the defining germ f0 containing
a special type of “unfurled kite map” of size ℓ. This will be valid for the Milnor
fiber, complement, and link.

We will do this by using the support of appropriate exterior subalgebras of the
Milnor fiber cohomology or of the complement cohomology for the varieties of sin-
gular matrices. This is done using results of [D4] giving the Schubert decomposition
for the Milnor fiber and the complement to define “vanishing compact models” de-
tecting these subalgebras. In §§5 and 9 we use the Schubert decompositions to
exhibit vanishing compact models in the Milnor fibers and complements. Then, we
give a detection criterion for exterior subalgebras of the characteristic cohomology
using a class of “unfurled kite maps”. Matrix singularities V0, 0 defined by germs
f0 which contain such an “unfurled kite map”, are shown to have such subalgebras
in their cohomology of Milnor fibers or complements and subgroups in their link
cohomology. In the case of general or skew-symmetric matrices, the results for the
Milnor fibers and complements is valid for cohomology over Z (and hence any coef-
ficient ring R); while for symmetric matrices, the results apply both for cohomology
with coefficients in a field of characteristic zero or for Z/2Z-coefficients. In all three
cases for a field of characteristic zero, cohomology subgroups are detected for the
links which are above the middle dimensions.

Furthermore, we extend in §10 the results for complements and links for m×m
matrices to general m × p matrices. This includes determining the form of the
characteristic cohomology and giving a detection criterion using an appropriate
form of kite spaces and mappings.

A restricted form of the kite spaces serve a further purpose in §11 for identifying
how the cohomology of local links of strata in the varieties of singular matrices
relate to the cohomology of the global links.

In §12 we begin to investigate how the cohomology of the Milnor fiber can be
understood as a module over the characteristic subalgebra and the role that the
topology of the singular Milnor fiber plays. This is further consider examples in §13
of generic hyperplane and hypersurface arrangements to see what form this module
structure takes.

Lastly, we consider in §13 a number of general classes of nonisolated complex
singularities which are of a given “universal type” . These include discriminants
of finitely determined (holomorphic) map germs; bifurcation sets for G-equivalence
where G is a geometric subgroup of A or K in the holomorphic category; generic
hyperplane or hypersurface arrangements based on special central complex hyper-
plane arrangements, and determinantal arrangements arising from exceptional or-
bit varieties of prehomogeneous spaces (which includes matrix singularities). We
consider how specific results for these examples reveal the role that characteristic
cohomology is playing for these other case.
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1. Characteristic Cohomology of Singularities of type V
We begin by considering singularities arising as nonlinear sections of some given

“universal ” singularity V , 0. There are many fundamental examples of such uni-
versal singularities which are, in particular, hypersurface singularities including:
reflection hyperplane arrangements, discriminants of stable map germs, bifurcation
sets for the G-versal unfoldings of germs for many different singularity equivalence
groups G which are “geometric subgroups of A or K” (see e.g. [D2] and papers cited
therein), exceptional orbit hypersurfaces of prehomogeneous spaces [D4] which in-
clude both reductive groups, e.g. [BM], and solvable groups [DP2], [DP3], as well
as specifically the varieties of singular m×m matrices which may be general, sym-
metric, or skew-symmetric (if m is even). There are also other classes of universal
singularities which are not hypersurface singularities, such as bifurcation sets for
certain G-versal unfoldings and varieties of singular n ×m matrices with n 6= m.
Part of the results we state will also be applicable to the non-hypersurface cases.

Category of Singularities of Type V.
We recall from [D5] that given a germ of an analytic set V , 0 ⊂ CN , 0, a “nonlinear

section”is given by a germ of a holomorphic map f0 : Cn, 0 → CN , 0 (so that
f0(C

n) 6⊂ V), where n may take any value (including allowing n > N). The
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associated singularity of type V is V0 = f−1
0 (V).

(1.1)

Cn, 0
f0−−−−→ CN , 0

x
x

f−1
0 (V) V0, 0 −−−−→ V , 0

We consider the category of singularities of type V . The objects are the singular-
ities of type V . Given two singularities of type V : V0 defined by f0 : Cn, 0→ CN , 0
and W0 defined by g0 : Cs, 0→ CN , 0, a morphism ψ :W0, 0→ V0, 0 is given by a
germ ψ̃ : Cs, 0→ Cn, 0 such that g0 = f0 ◦ ψ̃. Such singularities of type V and the
corresponding morphisms between them give a category on which we will define the
characteristic cohomology.

The basic equivalence for studying the ambient equivalence of such V0 is KV -
equivalence of the germs f0, which is a form of K-equivalence which preserves V ,
see e.g. [D5] or [D2]. This equivalence applied to an f0 : Cn, 0 → CN , 0 can
be viewed as the action on the section graph(f0) : Cn, 0 → Cn × CN , 0 of the
trivial vector bundle on Cn with fiber CN . It acts via diffeomorphisms of the fibers
preserving each copy of V and which holomorphically varies pointwise on Cn, 0. As
such it is a type of gauge group.

We also consider the defining equation H : CN , 0 → C, 0 for V . There is a
stronger KH -equivalence within KV -equivalence (see [DM] and [D1]) where the
diffeomorphisms of Cn × CN , (0, 0) preserve the defining map germ H ◦ pr2 : Cn ×
CN , (0, 0) → C, 0 for Cn × V , (0, 0), where pr2 denotes projection onto the second
factor CN , 0. These diffeomorphisms not only preserve Cn×V , but also Cn×F for
F a Milnor fiber of V .

We further consider a subcategory of singularities of type V where the germ f0
is transverse to V on the complement of 0 in Cn. Transversality can be either in
a geometric sense of transversality to the canonical Whitney stratification of V or
in an algebraic sense using the module of logarithmic vector fields (see [D1]) and
these agree if V is holonomic in the sense of Saito [Sa]. In these cases the corre-
sponding germ is finitely KV -determined. These singularities and the corresponding
morphisms between them give a subcategory of “finitely determined singularities
of type V”.

In analyzing the topology of such singularities V0 there are three contributions:

a) the contribution from the topology of the germ f0 and its geometric inter-
action with V ;

b) the contribution from the topology of V ;
c) the interaction between these two contributions combining to give the topol-

ogy of V0.
For a), there have been results introduced for discriminants of finitely determined

mappings and more generally finitely determined nonlinear sections of free divisors
and complete intersections in [DM] and [D1], and of the varieties of m×m matrices
in [GM] and [DP3], using a stabilization of the mapping to obtain a “singular
Milnor fiber” homotopy equivalent to a bouquet of spheres, with the number of
such spheres computed algebraically. However, this provides no information about
b). The characteristic cohomology which we will introduce will specifically address
b) and provide complementary information to that given for a). We briefly indicate
in §12 how these two contributions combine for c).
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Characteristic Cohomology on the Category of Singularities of Type V.
We begin with the definition for the Milnor fiber in the case V , 0 is a hypersurface

singularity.

Characteristic Cohomology AV(f0, R).
Let f0 : Cn, 0→ CN , 0 define the singularity V0. For V there exists 0 < η << δ

such that for balls Bη ⊂ C and Bδ ⊂ CN (with all balls centered 0), we let Fδ =
H−1(B∗

η) ∩ Bδ so H : Fδ → B∗
η is the Milnor fibration of H , with Milnor fiber

Fw = H−1(w) ∩ Bδ for each w ∈ B∗
η . By continuity, there is an ε > 0 so that

f0(Bε) ⊂ Fδ. By possibly shrinking all three values, H ◦ f0 : f−1
0 (Fδ)∩Bε → B∗

η is
the Milnor fibration of H ◦ f0. Then, the Milnor fiber of H ◦ f0 for w ∈ B∗

η is given
by

Vw = (H ◦ f0)−1(w) ∩Bε = f−1
0 (Fw) ∩Bε .

Thus, if we denote f0|Vw = f0,w, then in cohomology with coefficient ring R,
f∗
0,w : H∗(Fw;R)→ H∗(Vw;R). we let

(1.2) AV(f0;R)
def
= f∗

0,w(H
∗(Fw ;R)) ,

We formally define the characteristic cohomology of the Milnor fiber.

Definition 1.1. Let f0 : Cn, 0 → CN , 0 define V0 = f−1
0 (V). We define the

characteristic cohomology subalgebra of the Milnor fiber of V0, to be cohomology
subalgebra of the Milnor fiber H∗(Vw;R) of V0 given by (1.2).

Independence of AV(f0, R) on the Milnor Fiber under Cohomology Isomorphism.
Given another w′ ∈ B∗

η , let γ(t) denote a simple path in B∗
η from w to w′. We

may first lift γ(t) to an isotopy Φt : Fw → Fγ(t) of the restriction of the Milnor
fibration from Fw to Fw′ . We can also lift γ(t) to an isotopy Ψt : Vw → Vγ(t) of the
restriction of the Milnor fibration from Vw to Vw′ . Then, Φ−1

t ◦ f0 ◦Ψt : Vw → Fw

defines a homotopy from f0,w to Φ−1
1 ◦ f0,w′ ◦Ψ1. Thus, f

∗
0,w = Ψ∗

1 ◦ f∗
0,w′ ◦ Φ∗−1

1 .

Then, Φ∗−1
1 : H∗(Fw′ ;R) ≃ H∗(Fw ;R), and Ψ∗

1 : H∗(Vw′ ;R) ≃ H∗(Vw;R). Hence,
f∗
0,w′(H∗(Vw′ ;R)) is mapped under the cohomology algebra isomorphism Ψ∗

1 to

f∗
0,w(H

∗(Vw;R)). Thus, Ψ∗
1 maps the characteristic cohomology for the Milnor

fiber of Vw to that of Vw′ .
We also remark that if we consider a second set of values 0 < η′ < η, 0 < δ′ < δ,

and 0 < ε′ < ε for the Milnor fibers of H and H ◦ f0, and choose w ∈ B∗
η′ so

that the Minor fiber V ′
w is transverse to the spheres S2n−1

ε′′ for ε′ < ε′′ < ε, then
iw : V ′

w ⊂ Vw is a homotopy equivalence so the characteristic cohomology for V ′
w is

mapped isomorphically to that of Vw. Hence, the characteristic cohomology is well-
defined independent of the Milnor fiber up to Milnor fiber cohomology isomorphism.
When we want to refer to the characteristic cohomology at more than one point
w ∈ B∗

η , we use the notation A(f0, R)w to denote the representative in the Milnor
fiber cohomology H∗(Vw;R).
Remark 1.2. We consider two consequences of the above arguments. First, if we
choose a convex neighborhood w ∈ U ⊂ B∗

η , then as the paths in U between w and
any other w′ are homotopic, it follows that the induced diffeomorphisms between
the Milnor fibers Vw and Vw′ , resp. Fw and Fw′ , are homotopic so the algebra iso-
morphisms between the cohomology of the Milnor fibers over U is well-defined. This
gives a local trivialization of the unions ∪w′∈UA(f0, R)w′ , resp. ∪w′∈UH

∗(Vw′ ;R).
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On overlaps of two such neighborhoods the transition isomorphisms are constant.
Together they give a locally constant system on B∗

η . Second, if γ(t) is a simple loop
in B∗

η from w around 0, then the preceding arguments show the monodromy will
map the characteristic cohomology to itself. Thus, the characteristic cohomology
inherits two properties from the Milnor fiber cohomology. In this paper we will not
attempt to make use of these additional properties.

Characteristic Cohomology CV(f0, R).
We next introduce the characteristic cohomology of the complement of V0 in the

case where V , 0 need not be a hypersurface singularity. This proceeds somewhat
analogously to the case of Milnor fibers. Let f0 : Cn, 0→ CN , 0 define V0 = f−1

0 (V).
Then, we consider a representative f̃0 : U →W for which V also has a representative
onW , and we still denote the representative by V . Then, f̃−1

0 (V) is a representative
for V0 which we still denote by V0. Then, by stratification theory (see e.g. Mather
[M1], [M2] or Gibson et al [GDW]), there are 0 < δ0, ε0 so that for 0 < δ′ < δ ≤ δ0
and 0 < ε′ < ε ≤ ε0:

i) Bδ0 ⊂W and Bε0 ⊂ U ,
ii) ∂Bδ is transverse to V and ∂Bε is transverse to V0.
iii) V0∩Bε′ is ambiently homeomorphic to the cone on V0∩∂Bε′ , as is V ∩Bδ′

ambiently homeomorphic to the cone on V ∩ ∂Bδ′ , and
iv) the inclusions of pairs

(Bε′ ,V0 ∩Bε′) →֒ (Bε,V0 ∩Bε)

and

(Bδ′ ,V ∩Bδ′) →֒ (Bδ,V ∩Bδ) ,

are homotopy equivalences.

Thus, if f0(Bε′) ⊂ Bδ′ , and f0(Bε) ⊂ Bδ, then there is the commutative diagram

(1.3)

H∗(Bδ\V ;R)
f∗

0−−−−→ H∗(Bε\V0;R)

≃
y ≃

y

H∗(Bδ′\V ;R)
f∗

0−−−−→ H∗(Bε′\V0;R)
and the vertical maps are isomorphisms by property (iv). Thus, via the vertical
isomorphisms, the induced homomorphisms f∗

0 : H∗(Bδ\V ;R) → H∗(Bε\V0;R)
are independent of 0 < ε < ε0 and 0 < δ < δ0. Hence, the induced isomorphisms
f∗
0 (H

∗(Bδ\V ;R)) ≃ f∗
0 (H

∗(Bδ′\V ;R)) yield an inverse system with limit isomor-
phic to each of these groups, giving a well-defined cohomology subalgebra.

Definition 1.3. Let f0 : Cn, 0 → CN , 0 define V0 = f−1
0 (V). We define the

characteristic cohomology (algebra) of the complement of V0, to be cohomology
subalgebra which is the direct limit

CV(f0, R)
def
= lim

→
f∗
0 (H

∗(Bδ\V ;R)) .

We note that this cohomology is really in local cohomology of the complement,
but it is given by the complement in sufficient small neighborhoods.

Just as for complements, singularities V0 of type V also have characteristic co-
homology for the link.
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Characteristic Cohomology BV(f0, R).
We use the same notation as above for the complement where again V , 0 need

not be a hypersurface singularity. In this case, we consider R = k, a field of
characteristic 0. By the conical structure for the pair (Bε, Bε ∩ V0), it follows
that the inclusion jε : (S2n−1

ε \V0) ⊂ Bε\V0 is a homotopy equivalence. Thus,
j∗ε : H∗(Bε\V0;k) ≃ H∗(S2n−1

ε \V0;k) is an isomorphism.
For each 0 < ε ≤ ε0, there is the Kronecker dual graded subgroup of

j∗ε ◦ f∗
0 (H

∗(Bδ\V ;k)) ⊂ H∗(S2n−1
ε \V0;k) ,

which we denote by ΓV(f0;k) ⊂ H∗(S2n−1
ε \V0;k). We note that for the Kronecker

pairing we may choose a dual basis for H∗(Bε\V0;k) that extends a basis for j∗ε ◦
f∗
0 (H

∗(Bδ\V ;R)), so it is dually paired to ΓV(f0;k).
Then, we can apply a form of Alexander duality for subspaces of spheres, [Ma,

Chap. XIV, Thm 6.6] or see e.g. [D3, Prop. 1.9]. For L(V0) = S2n−1
ε ∩V0, the link

of V0,
(1.4) α : H̃j(L(V0);k) ≃ H̃2n−2−j(S

2n−1
ε \L(V0);k) for all j

Then, if Γ̃V(f0;k) denotes the corresponding reduced homology obtained by re-
moving H0 from ΓV(f0;k), then we define the characteristic cohomology for the
link.

Definition 1.4. Let f0 : Cn, 0→M, 0 define V0 = f−1
0 (V). We define the charac-

teristic cohomology of the link of V0, to be

(1.5) BV(f0;k)
def
= α−1(Γ̃V(f0);k)

Since the definition in (1.5) is independent, up to isomorphism, of ε, this gives a
well-defined graded cohomology subgroup in the cohomology of the link. However,
because of the use of Alexander duality, this is not a subalgebra as is the case for
the Milnor fiber and the complement. Also, the actual subgroup does depend upon
the choice of basis for the Kronecker pairing; however, we still obtain subspaces in
each degree whose dimensions are independent of choices.

Remark 1.5. On first glance it might seem that it would be more natural to define
the characteristic cohomology of the link to be

LV(f0, R)
def
= lim

→
f∗
0 (H

∗(Bδ ∩ V ;R)) .

However, we shall see in §9 that this subgroup of the cohomology of the link does
not capture the directly identifiable cohomology in H∗(L(V0), R). Specifically this
cohomology will lie above the middle dimension, while theorems such as the Le-
Hamm Local Lefschetz Theorem, see e.g. [HL] or [GMc, Part 2, §1.2, Thm 1], when
they are applicable only concern dimensions below the middle dimension.

Functoriality of Characteristic Cohomology AV(f0, R) and CV(f0, R).
We complete this section by establishing the functoriality of both AV (f0, R) and

CV(f0, R) on the category of singularities of type V .
Lemma 1.6. Given f0 : Cn, 0 → CN , 0 defining V , 0 and g0 : Cs, 0 → CN , 0
definingW , 0 both of type V , 0 ⊂ CN , 0 with a morphism ϕ :W0, 0→ V0, 0 defined by
ϕ̃ : Cs, 0 → Cn, 0. Then, ϕ induces the algebra homomorphisms ϕ̃∗ : AV(f0, R)→
AV(g0, R) and ϕ̃∗ : CV(f0, R)→ CV(g0, R). Moreover, both AV (f0, R) and CV(f0, R)
are functorial.
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Then, we shall let ϕ∗ : AV(f0, R) → AV(g0, R) and ϕ∗ : CV(f0, R) → CV(g0, R)
denote the induced algebra homomorphisms defined by ϕ̃∗.

Proof. We begin by showing that φ̃∗ gives a well-defined homomorphism between
the algebras in each case. We consider 0 < η << ε2, ε1, δ so that:

i) ϕ(Bε2 ) ⊂ Bε1 , f0(Bε1 ) ⊂ Bδ, and H(Bδ) ⊂ Bη; and
ii) H : H−1(B∗

η) ∩ Bδ → B∗
η is the Milnor fibration for H ; H ◦ f0 : (H ◦

f0)
−1(B∗

η) ∩Bε1∩ → B∗
η is the Milnor fibration for H ◦ f0; and H ◦ f0 ◦ ϕ̃ :

(H◦f0◦ϕ̃)−1(B∗
η)∩Bε2∩ → B∗

η is the Milnor fibration forH◦f0◦ϕ̃ = H◦g0.
Then, for w ∈ B∗

η we have the induced maps for the cohomology of the Milnor
fibers

(1.6) H∗(Fw ;R)
f∗

0−→ H∗(Vw;R)
ϕ̃∗

−→ H∗(Sw;R) .
Then the composition in (1.6) is

(1.7) H∗(Fw ;R)
ϕ̃∗

w◦f∗

0w−→ H∗(Sw ;R) .
The image of this composition in (1.7) defines AV(g0, R) and factors through (1.8).
Hence, ϕ̃∗

w induces a well-defined map ϕ̃∗ : AV (f0, R)→ AV(g0, R).

(1.8) H∗(Fw;R)
f∗

0 w−→ H∗(Vw;R) .
For functoriality, we include a third singularity Z0 of type V given by h0 : Cr, 0→

CN , 0 such that there is a map germ ψ̃ : Cr, 0 → Cs, 0 so that g0 ◦ ψ̃ = h0. Then,
choosing an additional 0 < η << ε3 so that ψ̃(Bε3) ⊂ Bε2 , and H ◦ f0 ◦ ϕ̃ ◦ ψ̃ :

(H ◦f0◦ϕ̃◦ψ̃)−1(B∗
η)∩Bε3∩ → B∗

η is the Milnor fibration for H ◦f0◦ϕ̃◦ψ̃ = H ◦h0.
Then, by functoriality in cohomology, ψ̃ maps the image in (1.7) to H∗(Zw;R), for

Zw the Milnor fiber of H ◦ h0 over w, and (ϕ̃ ◦ ψ̃)∗ = ψ̃∗ ◦ ϕ̃∗. Hence, using our
notation for the induced maps on characteristic cohomology, (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗.

For CV(f0, R), CV(g0, R), and CV(h0, R), the proof is similar, except we replace
the Milnor fibers by the complements Bδ\V , resp. Bε1\V0, resp. Bε2\W0, resp.
Bε3\Z0 and consider the induced maps in cohomology of these complements by f∗

0 ,

resp. ϕ̃∗, resp. ψ̃∗ and their compositions. �

One immediate consequence of functoriality is the detection of the nonvanishing
characteristic cohomology. We note for the identity map id : CN , 0 → CN , 0,
AV(id, R)w = H∗(Fw;R). With the above notation for a morphism ϕ : W0, 0 →
V0, 0 defined by ϕ̃ : Cp, 0 → Cn, 0 with V0, 0 defined by f0 : Cn, 0 → CN , 0 and
W0, 0 defined by g0 : Cp, 0→ CN , 0. Then, we have the corollary.

Corollary 1.7. If g∗0 : AV (id, R) → AV(g0, R) induces an isomorphism from a
graded subgroup E ⊂ AV(id, R) to a subgroup of AV (g0, R), then f∗

0 induces an
isomorphism from E to a subgroup of AV(f0, R).

There is an analogous result for CV(f0, R) and the complement.

Proof. By functoriality, we have for the sequence

AV(id, R)
f∗

0−→ AV(g0, R)
ϕ∗

−→ AV(g0, R)

the composition is ϕ∗ ◦f∗
0 = g∗0 . As g

∗
0 maps E isomorphically to its image, so must

f∗
0 map E isomorphically to its image. �
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We will see how we can apply this idea in §3 with applications for matrix singu-
larities given beginning in §refS:sec5.
Remark 1.8. Although BV(f0, R) is not functorial, it does satisfy a relation in-
volving a type of relative Gysin homomorphism, where in place of Poincare duality,
Alexander duality is used because the links are not manifolds. For a morphism
ϕ :W0, 0→ V0, 0 defined by ϕ̃ we have a map for sufficiently small 0 < η << ε2, ε1
so that ϕ̃(Bε2) ⊂ Bε1 and f0(Bε1) ⊂ Bδ. Then,

H̃j(S2s−1
ε2

∩W0;k)
α≃ H̃2s−2−j(S

2s−1
ε2
\W0;k)

jε2 ∗−→ H̃2s−2−j(Bε2\W0;k)
ϕ̃∗−→

H̃2s−2−j(Bε1\V0;k) ≃ H̃2s−2−j(S
2n−1
ε1

\V0;k)
α−1

≃ H̃2(n−s)+j(S2n−2
ε1

∩ V0;k)

(1.9)

The composition gives a homomorphism H̃j(S2s−1
ε2
∩W0;k)→ H̃2(n−s)+j(S2n−2

ε1
∩

V0;k). Then, via the identification for different εi, we obtain a form of Gysin ho-
momorphism

(1.10) ϕ∗ : H̃j(L(W0);k) −→ H̃2(n−s)+j(L(V0);k) .
Also, by choosing consistent bases for the cohomology, this will induce a Gysin-type
homomorphism BW(g0;k)→ BV(f0;k), which shifts degrees by 2(n− s).

2. KH and KV Invariance of Characteristic Cohomology

We next turn to the invariance properties of the characteristic cohomology.

Invariance of Characteristic Cohomolgy AV(f0;R) under KH Equivalence.

The dependence of AV(f0;R) on f0 is clarified by the next proposition.

Proposition 2.1. Suppose fi : C
n, 0→ CN , 0, i = 1, 2 are KH–equivalent. Let Fi,

i = 1, 2, denote the Milnor fibers of H ◦ fi for a w ∈ B∗
η . Then, for any coefficient

ring R, there is a cohomology algebra isomorphism α : H∗(F1;R) ≃ H∗(F2;R) such
that α(AV (f1;R)) = AV(f2;R).

Hence, the structure of the cohomology of the Milnor fiber of H ◦ f0 as a graded
algebra (or graded module) over AV(f1;R) is, up to isomorphism, independent of
the KH–equivalence class of f0.

.

Proof of Proposition 2.1. By the KH–equivalence of the germ fi : C
n, 0 → CN , 0,

there are representatives fi : U → W , for open neighborhoods U and W , and a
diffeomorphism onto a subspace

Φ : U ′ ×W ′ → U ×W(2.1)

(x, y) 7→ (ϕ(x), ϕ1(x, y))

sending (0, 0) 7→ (0, 0) such that Φ preservesH◦pr2 for pr2 : Cn×CN the projection
onto the second factor, and so that f2(ϕ(x)) = ϕ1(x, f1(x)) for all x ∈ U ′. Thus,
Φ(graph(f1)) = graph(f2)∩Im(Φ), and for any Milnor fiber Fw ofH , Φ(Cn×Fw) =
(Cn × Fw) ∩ Im(Φ).

We let gi = H ◦ fi. Next we choose 0 < η1 << δ1 << ε1 so that

i) Bδ1 ⊂W ′;
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ii) Bε1 ⊂ U ′;
iii) the Milnor fibration of H is given by H : H−1(B∗

η1
) ∩Bδ1 → B∗

η1
; and

iv) the Milnor fibration of each gi is given by gi : g
−1
i (B∗

η1
) ∩Bε1 → B∗

η1
.

Next, we begin to find a series of (ηj , δj , εj) so that:

1) 0 < ηj+1 < ηj ; 0 < δj+1 < δj , and 0 < εj+1 < εj and

(2.2) gi : g
−1
i (B∗

ηj+1
) ∩Bεj+1 → B∗

ηj+1
and H : H−1(B∗

ηj+1
) ∩Bδj+1 → B∗

ηj+1

are Milnor fibrations for gi, i = 1, 2, resp. H .
2)

(2.3) Tj+1
def
= Φ(Bεj+1 ×Bδj+1) ⊂ Bεj ×Bδj .

3) (Bεj+1 × Bδj+1) ⊂ Tj (as Tj is an open neighborhood of (0, 0)).

4) If V(i,j)
w denotes the Milnor fiber of gi : g

−1
i (B∗

ηj
)∩Bεj → B∗

ηj
, then for w ∈

B∗
ηj+1

the inclusions of Milnor fibers in (2.4) are homotopy equivalences.

(2.4) V(i,j+1)
w ⊂ V(i,j)

w ;

5) We repeat these steps for j = 1, . . . , 4.

We observe that as both Φ and the graph maps are diffeomorphisms, Φ : V(i,j)
w ≃

Φ(graph(V(i,j)
w )). We choose a w ∈ B∗

η4
and let Yj = graph(V(2,j)

w ) and Zj =

Φ(graph(V(1,j)
w )). Consider the sequence of inclusions and mapping

(2.5) Z4 ⊂ Y3 ⊂ Z2 ⊂ Y1
H→ (H−1(w) ∩Bη4)

Then, for cohomology (with coefficients in R understood)

(2.6) H∗(H−1(w) ∩Bη4)
H∗

→ H∗(Y1)→ H∗(Z2)→ H∗(Y3)→ H∗(Z4)

Now the composition H∗(Y1) → H∗(Z2) → H∗(Y3) is an isomorphism; hence
H∗(Z2) → H∗(Y3) is surjective. Second, the composition H∗(Z2) → H∗(Y3) →
H∗(Z4) is also an isomorphism so H∗(Z2)→ H∗(Y3) is one-one. Thus, H∗(Z2)→
H∗(Y3) is an isomorphism. Hence, so are the other inclusions isomorphisms.

A similar argument for the Milnor fibers of H for the various j, together with
Φ preserving H−1(w) implies that Φ∗ induces an isomorphism of the cohomology

of the Milnor fiber. Since the map Φ : graph(V(1,2)
w ) → graph(V(2,1)

w ) commutes
with H , we deduce that the induced isomorphism from Φ∗ preserves the subalgebra
pr∗2(H

∗(H−1(w))∩Bδ). By the isomorphism on cohomology via graph∗, we obtain
the preservation of the characteristic subalgebra. �

Remark 2.2. We can apply the preceding argument for the sequence of inclusions

in (2.5) conclude Φ : graph(V(1,2)
w ) → graph(V(2,1)

w ) induces an isomorphism for
both integer homology and the fundamental group. As the closures of both of
these spaces are smooth manifolds with boundaries and hence have CW-complex
structures, it follows by the Hurewicz theorem that Φ is a homotopy equivalence.

Invariance of Characteristic Cohomology CV(f0;R) and CB(f0;R) under KV
Equivalence.

In analogy with Proposition 2.1, the dependence of CV(f0;R) and BV(f0;R) on
the KV -equivalence class of f0 is given by the next proposition.
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Proposition 2.3. Suppose fi : Cn, 0 → CN , 0, i = 1, 2 are KV–equivalent. Let
Vi = f−1

i (V). Then, for any coefficient ring R, there is a cohomology algebra iso-
morphism β : H∗(Cn\V1;R) ≃ H∗(Cn\V2;R) such that β(CV(f1;R)) = CV(f2;R).

Hence, the structure of the cohomology of the complement Cn\Vi as a graded
algebra (or graded module) over CV(f1;R) is, up to isomorphism, independent of
the KV–equivalence class of fi.

Proof. The proof is similar to that for Proposition 2.1, except that the diffeomor-
phism Φ : U ′ ×W ′ → U ×W in (2.1) only preserves Cn × V . �

Then, for links we have a corresponding result provided the coefficient ring R =
k, a field of characteristic 0.

Proposition 2.4. Suppose fi : C
n, 0→ CN , 0, i = 1, 2 are KV–equivalent. Let Vi =

f−1
i (V). Then, there is an isomorphism of graded vector spaces β : H∗(L(V1);k) ≃
H∗(L(V2);k) such that β(BV(f1;k)) = BV(f2;k).

Hence, BV(fi;k) is, up to isomorphism, independent of the KV–equivalence class
of fi.

Proof. The diffeomorphism Φ : U ′×W ′ → U×W induces diffeomorphisms graph(fi)∩
V and graph(fi)\V . These induce diffeomorphisms U ∩ V1 ≃ U ′ ∩ V2 and U\V1 ≃
U ′\V2. These first induce isomorphismsH∗(U ′\V2;k) ≃ H∗(U\V1;k). This contin-
ues to hold for sufficiently small balls using the argument in the proof of Proposition
2.1. As the homeomorphisms commute with f∗

i , we obtain the restriction isomor-
phism CV(f1;k) ≃ CV(f2;k).

Then, by choosing corresponding bases for these cohomology groups we obtain
via the Kronecker pairings, isomorphisms with the homology groups of the comple-
ments. Then, associated to the isomorphisms between the CV(fi;k), there is an in-

duced isomorphism in reduced homology Γ̃V(f1;k) ≃ Γ̃V(f2;k). Lastly, Alexander
duality induces isomorphisms of graded vector spaces BV(f1;k) ≃ BV(f2;k). �

3. Detecting the Nonvanishing of Characteristic Cohomology

We next ask for a singularity V0 of type V , what will be the nonvanishing parts
of the characteristic subalgebras AV(f0;R), CV(f0;R) and the characteristic co-
homology BV(f0;R)? For the Milnor fiber, AV(f0;R) is isomorphic to a quotient
algebra of H∗(Fw;R), but possibly it is just H0(Vw;R). Similarly, for the comple-
ment CV(f0;R), it is isomorphic to a quotient of H∗(CN\V ;R); and then we can
determine a nonzero subgroup in BV(f0;R) via Alexander duality.

We give a general method for detecting such non-zero subgroups of character-
istic cohomology using “vanishing compact models” for both the Milnor fiber and
complement.

Nonvanishing Characteristic Cohomology for the Milnor Fiber.
We consider a hypersurface singularity V , 0 ⊂ CN , 0 with defining equation H :

CN , 0→ C, 0 and Milnor fibration H : H−1(B∗
η) ∩Bδ0 → B∗

η .

Definition 3.1. We say that V , 0 has a vanishing compact model for its Milnor
fiber if there is a compact space QV , smooth curves γ : [0, η) → Bη satisfying
|γ(t)| = t and β : [0, η)→ [0, δ0), monotonic with β(0) = 0, and an embedding into
the Milnor fibration of H ,

Φ : QV × (0, δ) →֒ H−1(B∗
η) ∩Bδ such that:
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i) each H : H−1(B
∗
|γ(t)|) ∩Bβ(t) → B

∗
|γ(t)| is again a Milnor fibration for H

ii) each Φ(QV × {t}) ⊂ Fw is a homotopy equivalence for Fw the Milnor fiber
of i) over w = γ(t).

This is the analogue of a basis of smoothly vanishing cycles for the isolated
hypersurface case.

Next, with the situation as above, let E ⊆ H∗(QV ;R) be a graded subgroup.
We say that a compact subspace with inclusion map λE : QE ⊆ QV detects E
in cohomology with R coefficients if the map on cohomology λ∗E : H∗(QV ;R) →
H∗(QE ;R) induces an isomorphism from E to H∗(QE ;R). Then, we say that a
germ of an embedding iE : Cs, 0→ CN , 0 detects E if for sufficiently small 0 < η <<
ε < δ there is a vanishing compact model Ψ : QE×(0, δ) →֒ (H ◦ iE)−1(B∗

η)∩Bε for
the Milnor fibration of H ◦ iE so that iE ◦Ψ = Φ ◦ (λE × id), i.e. (3.1) commutes.

(3.1)

QE × (0, δ)
Ψ−−−−→ (H ◦ iE)−1(B∗

η) ∩Bε

λE×id

y iE

y

QV × (0, δ)
Φ−−−−→ H−1(B∗

η) ∩Bδ

We then have the simple Lemma.

Lemma 3.2 (Detection Lemma for Milnor Fibers). Given f0 : Cn, 0 → CN , 0
defining (V0, 0) of type V, suppose there is a germ g : Cs, 0 → Cn, 0 such that
f0 ◦ g is KH-equivalent to a germ detecting E. Then, AV(f0, R) contains a graded
subgroup which is isomorphic to E via f∗

0 : H∗(Fw ;R)→ H∗(Vw;R) to E.

Proof. We use the functoriality of g∗ : AV (f0, R)→ AV(f0 ◦ g,R) given by Lemma
1.6. We do so using the representation by (1.6), with ϕ̃ representing g; and we
first consider the case where the composition f0 ◦ ϕ̃ denotes f0 ◦ g = iE . Provided
w = γ(t), with 0 < |w| < η is sufficiently small, there is the compact model Φ(QV×
{t}) ⊂ Fw. The composition gives as the embedding iE : (QE×{t}) ⊂ (QV×{t}) ⊂
Fw. In cohomology it maps E ⊆ H∗(Fw ;R) isomorphically to H∗(QE × {t};R) ≃
H∗(QE ;R).

Then,we compose the corresponding version of (1.6) with the map on cohomology
factors through (QE×{t}) ⊂ Sw (for Sw the Milnor fiber ofH◦iE). It will then send
E ⊆ H∗(Fw ;R) isomorphically to the subgroup of the intermediate cohomology

H∗(Vw;R). Thus, AV(f0, R) contains this isomorphic copy of E via f̃0,w.
Second, if instead f0 ◦ g is KH -equivalent to iE , by Proposition 2.1, there is an

algebra isomorphism AV(iE , R) ≃ AV(f0 ◦ g,R). Then, AV (f0 ◦ g,R) contains a
subspace isomorphic under an algebra isomorphism to E. Since this subspace is,
up to an algebra isomorphism, the image of g∗ of the image of f̃∗

0,w(E) that image
must be an isomorphic image of E. �

Nonvanishing Characteristic Cohomology for the Complement and Link.

With the above notation, we consider the characteristic cohomology of the com-
plement and link. We use the notation and neighborhoods given in the definition of
the characteristic cohomology for the complement and link in §1 for f0(Bε0) ⊂ Bδ0 .
Then,

f∗
0 : H∗(Bδ0\V ;R) −→ H∗(Bε\V0;R) .

We introduce a corresponding vanishing compact model for the complement.
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Definition 3.3. We say that V , 0 has a vanishing compact model for the comple-
ment if there is a compact space PV , a smooth curve γ : [0, δ)→ [0, δ0), monotonic
with γ(0) = 0, and an embedding into the complement of V ,

Φ : PV × (0, δ) →֒ Bδ0\V such that:

i) each (Bγ(t), Bγ(t) ∩ V) again has a cone structure;

ii) (Bγ(t′), Bγ(t′) ∩ V) ⊂ (Bγ(t), Bγ(t) ∩ V) is a homotopy equivalence for 0 <
t′ < t; and

iii) each Φ(PV × {t}) ⊂ Bγ(t)\V is a homotopy equivalence.

Next, with the situation as above, let E ⊆ H∗(PV ;R) be a graded subgroup.
We say that a compact subspace with inclusion map σE : PE ⊆ PV detects E
in cohomology with R coefficients if the map on cohomology σ∗

E : H∗(PV ;R) →
H∗(PE ;R) induces an isomorphism from E toH∗(PE ;R). Then, we say that a germ
of an embedding jE : Cs, 0→ CN , 0 detects E if for sufficiently small 0 < ε < δ with
iE(Bε) ⊂ Bδ, there is a vanishing compact model Ψ : PE × (0, δ) →֒ Bε\j−1

E (V) so
that jE ◦Ψ = Φ ◦ (σE × id). We then have the simple Lemma.

Lemma 3.4 (Second Detection Lemma). Given f0 : Cn, 0 → CN , 0 defining V0, 0
of type V, suppose there is a germ g : Cs, 0 → Cn, 0 such that f0 ◦ g is KV -
equivalent to a germ detecting E. Then, CV(f0, R) contains a graded subgroup
which is isomorphic to E via f∗

0 : H∗(Bδ\V ;R)→ H∗(Bε\V0);R).

Proof. The proof is similar to that for Lemma 3.2 using instead the functoriality
of g∗ : CV(f0, R) → CV(f0 ◦ g,R) given by Lemma 1.6. As we are really working
with local cohomology, we must consider the cohomology groups of complements on
varying neighborhoods of 0. By assumption there are vanishing compact models:
Φ : PV × (0, δ) →֒ Bδ0\V and Ψ : PE × (0, δ) →֒ Bε\i−1

E (V) so that jE ◦ Ψ =
Φ ◦ (σE × id).

Provided 0 < γ(t) < δ for δ sufficiently small, there is the compact model
Φ(PV × {t}) ⊂ Bγ(t)\V . The composition jE : (PE × {t}) ⊂ (PV × {t}) is an
embedding which in cohomology maps E ⊆ H∗(PV × {t};R) isomorphically to
H∗(PE × {t};R) ≃ H∗(PE ;R).

Then, we refer to corresponding version of (1.6) with ϕ̃ representing g and the
composition f0 ◦ ϕ̃ denoting f0 ◦ g = jE . We see that this composition further
composed with the map on cohomology induced from (PE × {t}) ⊂ Bε\i−1

E (V)
will then send E ⊆ H∗(Bδ0\V ;R) isomorphically to the graded subgroup of the
intermediate cohomology H∗(Bε\V0;R). Thus, CV(f0, R) contains this isomorphic
copy of E via f∗

0 .
Also, if instead f0 ◦ g is KH -equivalent to iE , by Proposition 2.1, there is an

algebra isomorphism CV(iE , R) ≃ CV(f0 ◦ g,R). Then, CV(f0 ◦ g,R) contains a
subspace isomorphic under an algebra isomorphism to E. Since this subspace is,
up to an algebra isomorphism, the image by g∗ of the image of f∗

0 (E), that image
must be the isomorphic image of E. �

Corollary 3.5. Given f0 : Cn, 0→ CN , 0 defining V0, 0 of type V, suppose there is
a germ g : Cs, 0→ Cn, 0 such that f0 ◦ g is KV -equivalent to a germ detecting E ⊆
H̃∗(CN\V ;k), for k a field of characteristic 0. Then, BV(f0,k) contains a graded
subgroup which is isomorphic via the Kronecker pairing and Alexander duality to

the image of E via the isomorphisms H̃j(Bε\V0;k) ≃ H̃2n−2−j(S2n−1
ε ∩ V0;k).



16 JAMES DAMON

Proof. This is a consequence of the Second Detection Lemma 3.4 and the definition
of BV(f0,k) via the Kronecker pairing and Alexander duality. �

4. Matrix Equivalence for the Three Types of Matrix Singularities

We will apply the results in previous sections to the cohomology for a matrix
singularity V0 for any of the three types of matrices. We let M denote the space of
m ×m general matrices Mn(C), resp. symmetric matrices Symn(C), resp. skew-

symmetric matrices Skn(C). We also let D(∗)
m denote the variety of singular matrices

for each case with (∗) denoting () for general matrices, (sy) for symmetric matrices,
or (sk) for skew-symmetric matrices. Also, the corresponding defining equations
for the three cases are given by: det for the general and symmetric cases and the
Pfaffian Pf for the skew-symmetric case. We generally denote the defining equation
by H : CN , 0 → C, 0 for V , where M ≃ CN for appropriate N in each case and

V = D(∗)
m .

Matrix Singularities Equivalences KM and KHM .
There are several different equivalences that we shall consider for matrix singu-

larities f0 : Cn, 0→M, 0 with V denoting the subvariety of singular matrices in M .
The one used in classifications is KM–equivalence: We suppose that we are given
an action of a group of matrices G on M . For symmetric or skew symmetric matri-
ces, it is the action of GLm(C) by B · A = BABT . For general m× p matrices, it
is the action of GLm(C)×GLp(C) by (B,C) ·A = BAC−1. Given such an action,
then the group KM consists of pairs (ϕ,B), with ϕ a germ of a diffeomorphism of
Cn, 0 and B a holomorphic germ Cn, 0→ G, I. The action is given by

f0(x) 7→ f1(x) = B(x) · (f0 ◦ ϕ−1(x)) .

Although KM is a subgroup of KV , they have the same tangent spaces and their
path connected components of their orbits agree (for example this is explained in
[DP3, §2] because of the results due to Józefiak [J], Józefiak-Pragacz [JP], and
Gulliksen-Neg̊ard[GN] as pointed out by Goryunov-Mond [GM]).

We next restrict to codimension 1 subgroups; let

GLm(C)(2)
def
= ker(det× det : GLm(C)×GLm(C)→ (C∗ × C∗)/∆C∗)

where ∆C∗ is the diagonal subgroup. We then replace the groups forKM–equivalence
by the subgroup SLm(C) for the symmetric and skew-symmetric case and for the
general case the subgroup GLm(C)(2). These restricted versions of equivalence pre-
serve the defining equation H in each case. We denote the resulting equivalence
groups by KHM , which are subgroups of the corresponding KH . As KHM equiva-
lences preserve H , they also preserve the Milnor fibers and the varieties of singular
matrices V . By the above referred to results, in each of the three cases, these KHM

also have the same tangent spaces as KH in each case.
For each of the three cases of m ×m matrices M = Mm(C), resp. Symm(C),

resp. Skm(C), the matrix singularities V0 defined by f0 : Cn → M, 0 = CN , 0
have characteristic subalgebras that are defined by the results and discussion of §1.
With (∗) denoting () for general matrices, (sy) for symmetric matrices, or (sk) for
skew-symmetric matrices, we will use

Abbreviated Notation for the Characteristic Cohomology for V = D(∗)
m :
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A(∗)(f0;R) = AD(∗)
m

(f0;R), C(∗)(f0;R) = CD(∗)
m

(f0;R) ,

and B(∗)(f0;k) = BD(∗)
m

(f0;k)

for any coefficient ring R and field k of characteristic 0.
As a consequence of Proposition 2.1, since KHM is a subgroup of KH , we have

the following corollary.

Corollary 4.1. For each of the three cases of the varieties of m × m singular

matrices V = D(∗)
m , let V0 be defined by f0 : Cn, 0 → M, 0, with M denoting the

corresponding space of matrices. Then,

a) the characteristic subalgebra A(∗)(f0;R) is, up to Milnor fiber cohomology
isomorphism, an invariant of the KHM–equivalence class of f0;

b) B(∗)(f0;k) is, up an isomorphism of the cohomology of the link, an invariant
of the KM–equivalence class of f0; and

c) the characteristic subalgebra C(∗)(f0;R) is, up to an isomorphism of the
cohomology of the complement, an invariant of the KM–equivalence class
of f0.

Hence, the structure of the cohomology of the Milnor fiber of V0 as a graded
algebra (or graded module) over A(∗)(f0;R) is, up to isomorphism, independent of
the KHM–equivalence class of f0

Before considering the cohomology of the Milnor fibers of the Dm(∗), we first

give an important property which implies that each of the D(∗)
m are H-holonomic in

the sense of [D2], which gives a geometric condition that assists in proving that the
matrix singularity is finitely KHM -determined (and hence finitely KH -determined).
This will be a consequence of the fact that for all three cases the above groups act

transitively on the strata of the canonical Whitney stratification of D(∗)
m .

Lemma 4.2. For each of the three cases of m ×m general, symmetric and skew-
symmetric matrices, the corresponding subgroups GLm(C)(2) , resp. SLm(C) act

transitively on the strata of the canonical Whitney stratification of D(∗)
m .

Proof of Lemma 4.2. First, for the general case, let A ∈ Dm have rank r < m. We
also denote the linear transformation on the space of column vectors defined by A
to be denoted by LA. Then, we let {v1, . . . ,vm} denote a basis for Cm so that
{vr+1, . . . ,vm} is a basis for ker(LA). We also let {w1, . . . ,wm} denote a basis
for Cm so that wj = LA(vj) for j = 1, . . . , r. We let b = det(v1 . . .vm) and c =
det(w1 . . .wm). Then, we let B−1 = (v1, . . . ,vm−1,

c
b
vm) and C−1 = (w1 . . .wm).

Then, C ·A ·B−1 =

(
Ir 0
0 0

)
, where Ir is the r× r identity matrix. Also,det(B) =

det(C) = c so (B,C) ∈ GLm(C)(2). Thus, the each orbit of GLm(C) × GLm(C),
which consists of matrices of given fixed rank < m is a stratum of the canonical
Whitney stratification, is also an orbit of GLm(C)(2).

For both the symmetric and skew-symmetric casesthe corresponding orbist under
GLm(C) consist of matrices of given symmetric or skew-symmetric type of fixed
rank < m; and they form stratam of the canonical Whitney stratification. We
show that they are also orbits under the action of SLm(C).
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For A ∈ D(sy)
m of rank r < m, we consider the symmetric bilinear form ψ(X,Y ) =

XT · A · Y for column vectors in Cm. We can find a basis {v1, . . . ,vm} for Cm so
that ψ(vi,vi) = 1 for i = 1, . . . , r, = 0 for i > r, and ψ(vi,vj) = 0 if i 6= j. Then,
let b = det(v1 . . .vm), we let BT = (v1, . . . ,vm−1,

1
b
vm). Then det(B) = 1 and

B · A · BT =

(
Ir 0
0 0

)
.

Lastly, for the skew-symmetric case the argument is similar, except for A ∈ D(sk)
m

of rank r < m, we consider the skew-symmetric bilinear form ψ(X,Y ) = XT ·A ·Y
for column vectors in Cm with even m and r = 2k. There is a basis {v1, . . . ,vm}
for Cm so that ψ(v2i−1,v2i) = 1 for i = 1, . . . , k, and otherwise, ψ(vi,vj) = 0
for i < j. Then, let b = det(v1 . . .vm), we let BT = (v1, . . . ,vm−1,

1
b
vm). Then

det(B) = 1 and B ·A ·BT =

(
Jk 0
0 0

)
, where Jk is the r× r block diagonal matrix

with k 2× 2-blocks of J1 =

(
0 1
−1 0

)
. �

5. Cohomology of the Milnor Fibers of the D(∗)
m

We next recall results from [D3] and [D4] giving the cohomology structure of

the Milnor fibers of the D(∗)
m for each of the three types of matrices. This includes:

representing the Milnor fibers by global Milnor fibers, giving compact symmetric
spaces as compact models for the homotopy types of the global Milnor fibers, giv-
ing the resulting cohomology for the symmetric spaces, geometrically representing
the cohomology classes, and indicating the relation of the cohomology classes for
different m.

Homotopy Type of Global Milnor fibers via Symmetric Spaces.
The global Milnor fibers for each of the three cases, which we denote by , Fm,

resp. F
(sy)
m , resp. F

(sk)
m , are given by H−1(1) for H : M, 0 → C, 0 the defining

equation for D(∗)
m , which is det for the general of symmetric case and Pfaffian Pf

for the skew-symmetric case. As shown in [D3] the Milnor fiber for the germ of H
at 0 is diffeomorphic to the global Milnor fiber. The representation of the global
Milnor fiber as a homogeneous space, by homotopy type as symmetric spaces, and
compact models diffeomorphic to their Cartan models is given by [D4, Table 1],
which we reproduce here.

Milnor Quotient Symmetric Compact Model Cartan

Fiber F
(∗)
m Space Space F

(∗) c
m Model

Fm SLm(C) SUm SUm F c
m

F
(sy)
m SLm(C)/SOm(C) SUm/SOm SUm ∩ Symm(C) F

(sy) c
m

F
(sk)
m ,m = 2n SL2n(C)/Spn(C) SU2n/Spn SUm ∩ Skm(C) F

(sk) c
m · J−1

n

Table 1. Global Milnor fiber, its representation as a homogene-
nous space, compact model as a symmetric space, compact model
as subspace and Cartan model.
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Tower Structures of Global Milnor fibers and Symmetric Spaces by In-
clusion.

The global Milnor fibers for all cases, their symmetric spaces, and their compact
models form towers via inclusions. These are given as follows. For the general
and symmetric cases, there is the homomorphism j̃m : SLm(C) →֒ SLm+1(C)

sending A 7→
(
A 0
0 1

)
. This can be identified with the inclusion of Milnor fibers

j̃m : Fm ⊂ Fm+1. Also, it restricts to give an inclusion j̃m : SUm →֒ SUm+1

which are the compact models for the general case. Second, it induces an inclusion

j̃
(sy)

m : SLm(C)/SOm(C) →֒ SLm+1(C)/SOm+1(C) which is an inclusion of Milnor

fibers j̃
(sy)

m : F
(sy)
m →֒ F

(sy)
m+1. It also induces an inclusion of the compact homotopy

models j̃
(sy)

m : SUm/SOm(R) ⊂ SUm+1/SOm+1(R) for the Milnor fibers.
For the skew symmetric case, the situation is slightly more subtle. First, the com-

position of two of the above successive inclusion homomorphisms for SLm(C) gives

a homomorphism SLm(C) →֒ SLm+2(C) sending A 7→
(
A 0
0 I2

)
for the 2× 2 iden-

tity matrix I2. For even m = 2k, it induces an inclusion j̃
(sk)

m : SLm(C)/Spk(C) →֒
SLm+2(C)/Spk+1(C). However, the inclusion of Milnor fibers j̃

(sk)

m : F
(sk)
m →֒ F

(sk)
m+2

is given by the map sending A 7→
(
A 0
0 J1

)
for the 2 × 2 skew-symmetric matrix

J1 =

(
0 1
−1 0

)
. These two inclusions are related via the action of SLm(C)/Spk(C)

on F
(sk)
m which induces a diffeomorphism given by B 7→ B · Jk · BT (m = 2k).

This also induces an inclusion of compact homotopy models SUm ∩ Skm(C) ⊂
SUm+2 ∩ Skm(C). This inclusion commutes with both the inclusion of the Milnor
fibers under the diffeomorphism given in [D3] by the action, and the inclusion of
the Cartan models induced from the compact models after multiplying by J−1

k , see
Table 1. The Schubert decompositions for all three cases given in [D4] satisfy the
additional property that they respect the inclusions.

Cohomology of Global Milnor fibers using Symmetric Spaces.
Next, we recall the form of the cohomology algebras for the global Milnor fibers.

First, for the m × m matrices for the general case or skew-symmetric case (with
m = 2n), with cohomology coefficients R = Z, by Theorems [D4, Thm. 6.1] and
[D4, Thm. 6.14],

H∗(Fm;Z) ≃ Λ∗Z〈e3, e5, . . . , e2m−1〉 general case(5.1)

H∗(F (sk)
m ;Z) ≃ Λ∗Z〈e5, e9, . . . , e4n−3〉 skew-symmetric case (m = 2n)(5.2)

and therefore these isomorphisms continue to hold with Z replaced by any coefficient
ring R. Thus, for any coefficient ring R, A(∗)(f0;R) is the quotient ring of a
free exterior R-algebra on generators e2j−1, for j = 2, 3, . . . ,m, resp. e4j−3 for
j = 2, 3, . . . , n.

For the m×m symmetric case there are two important cases where either R =
Z/2Z or is a field of characteristic zero. First, for the coefficient ring R = k a field
of characteristic zero, the symmetric case breaks-up into two cases depending on
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whether m is even or odd (see [MT, Thm. 6.7 (2), Chap. 3] or Table 1 of [D3]).

(5.3) H∗(F (sy)
m ;k) ≃

{
Λ∗k〈e5, e9, . . . , e2m−1〉 if m = 2k + 1

Λ∗k〈e5, e9, . . . , e2m−3〉{1, em} if m = 2k .

Here em is the Euler class of a m-dimensional real oriented vector bundle Ẽm on the

Milnor fiber F
(sy)
m . The vector bundle Ẽm on the symmetric space SUm/SOm(R)

has the form SUm ×SOm(R) R
m → SUm/SOm(R) where the action of SOm(R) is

given by the standard representation. This can be described as the bundle of totally
real subspaces of Cm, which is the bundle of m-dimensional real subspaces of Cm

whose complexifications are Cm.
In the second case for R = Z/2Z, by Theorem [D4, Thm. 6.15] using [MT, Thm.

6.7 (3), Chap. 3], we have

(5.4) H∗(F (sy)
m ;Z/2Z) ≃ Λ∗Z/2Z〈e2, e3, . . . , em〉

for generators ej = wj(Ẽm), for j = 2, 3, . . . ,m, for wj(Ẽm) the j-th Stiefel-

Whitney class of the real oriented m-dimensional vector bundle Ẽm above.
We summarize the structure of the characteristic subalgebra A(∗)(f0;R) in each

case with the following.

Theorem 5.1. Let f0 : Cn, 0 → M, 0 define a matrix singularity V0, 0 for M the
space of m ×m matrices which are either general, symmetric, or skew-symmetric
(with m = 2n).

i) In the general and skew-symmetric cases, A(∗)(f0;R) is a quotient of the
free R-exterior algebra with generators given in (5.1)

ii) In the symmetric case with R = Z/2Z, A(sy)(f0;Z/2Z) is the quotient

of the free exterior algebra over Z/2Z on generators ej = wj(Ẽm), for

j = 2, 3, . . . ,m, for wj(Ẽm) the Stiefel-Whitney classes of the real ori-

ented m-dimensional vector bundle Ẽm on the Milnor fiber of D(sy)
m . Hence,

A(∗)(f0;Z/2Z) is a subalgebra generated by the Stiefel-Whitney classes of

the pull-back vector bundle f∗
0,w(Ẽm) on Vw.

iii) In the symmetric case with R = k, a field of characteristic zero, A(sy)(f0;k)
is a quotient of the k-algebras in each of the cases in (5.3).

Then, in each of these cases, the cohomology (with coefficients in a ring R) of the
Milnor fiber of V0 has a graded module structure over the characteristic subalgebra
A(∗)(f0;R) of f0.

Cohomology Relations Under Inclusions for Varying m.
We give the relations between the cohomology of the global Milnor fibers and

the symmetric spaces for varying m under the induced inclusion mappings. The
relations are the following.

Proposition 5.2. 1) In the general case, for the inclusions j̃m−1 : SUm−1 →֒
SUm and j̃m−1 : Fm−1 ⊂ Fm, j̃

∗
m−1 is an isomorphism on the subalgebra

generated by {e2i−1 : i = 2, . . . ,m− 1} and j̃
∗
m−1(e2m−1) = 0.

2) In the skew-symmetric case (with m = 2n), for the inclusions j
(sk)
m−2 :

SU2(n−1)/Spn−1 →֒ SU2n/Spn and for Milnor fibers j̃
(sk)

m−2 : F
(sk)
m−2 →֒

F
(sk)
m , j̃

(sk) ∗
m−2 is an isomorphism on the subalgebra generated by {e4i−3 :

i = 2, . . . ,m− 1} and j̃
(sk) ∗
m−2 (e4m−3) = 0.
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3) In the symmetric case, for the inclusion j̃
(sy)

m−1 : SUm−1/SOm−1(R) →֒
SUm/SOm(R) and for Milnor fibers j̃

(sy)

m−1 : F
(sy)
m−1 ⊂ F

(sy)
m :

i) for coefficients R = Z/2Z, j̃
(sy) ∗
m−1 is an isomorphism on the subalgebra

generated by {ei : i = 2, . . . ,m− 1} and j̃
(sy) ∗
m−1 (em) = 0;

iia) for coefficients R = k, a field of characteristic 0, if m = 2k, then

j̃
(sy) ∗
m−1 is an isomorphism on the subalgebra generated by {e4i−3 : i =

2, . . . , k}, and j̃
(sy) ∗
m−1 (em) = 0, and

iib) ifm = 2k+1, then j̃
(sy) ∗
m−1 is an isomorphism on the subalgebra generated

by {e4i−3 : i = 2, . . . , k}, and j̃
(sy) ∗
m−1 (e2m−1) = 0,.

Proof. For the general and skew-symmetric cases, the Schubert decomposition for

the Cartan models Cm and C(sk)m for successive m given in [D4] preserves the inclu-
sions and the homology properties. In these two cases the result follows from the
resulting identified Kronecker dual cohomology classes [D4, §6].

For the symmetric case and for Z/2Z-coefficients, an analogous Schubert de-
composition gives the corresponding result. The remaining symmetric case for
coefficients k a field of characteristic 0 does not follow in [D4] from the Schubert
decomposition. Instead, the computation of the cohomology of the symmetric space
given in [MT, Chap. 3] yields the result. In fact the algebraic computations in [MT,
Chap. 3] also give the results for the other cases. �

Vanishing Compact Models for the Milnor Fibers of D(∗)
m .

We can use the preceding compact models for the Milnor fibers and complements
to give vanishing compact models for both cases and for detecting nonvanishing

subalgebras of the characteristic subalgebras. From the above, let F
(∗),c
M denote

the compact models for the individual global Milnor fibers F
(∗)
M . We define Φ :

F
(∗),c
m ×(0, 1]→ H−1((0, 1]) sending Φ(A, t) = t ·A. Also, let E = Λ∗R{ei1 , . . . , eiℓ}

denote the exterior subalgebra ofH∗(F (∗),c
m ;R) on generators of the ℓ lowest degrees.

We also let λE : F
(∗),c
ℓ → F

(∗),c
m denote the compositions j̃

(∗)
m−1 ◦ · · · ◦ j̃

(∗)
ℓ . Then, by

Proposition 5.2, λ∗E induces an isomorphism from E to its image. Our goal is to
first show that an appropriate restriction of Φ to a subinterval (0, δ) will provide

a vanishing compact model for F
(∗)
M ; and moreover, we will use λ∗E to give a germ

which detects E. First, we give vanishing compact models for each case as follows.

Proposition 5.3. A vanishing compact model for the Milnor fiber for D(∗)
M is given

for sufficiently small 0 < δ << ε by Φ : F
(∗),c
m × (0, ε] → H−1((0, ε]) sending

Φ(A, t) = t · A.
Proof. We begin by first making a few observations about the global Milnor fibers.
For M one of the spaces of m × m matrices, we consider H : M, 0 → C, 0 the

defining equation for D(∗)
m (H = det or Pf). Then, the global Milnor fiber is

F
(∗)
m = H−1(1). Now we can consider multiplication in M by a constant a 6= 0. As

H is homogeneous, if A ∈ F (∗)
m , then a ·A ∈ H−1(am) in the general or symmetric

cases, or in the skew-symmetric cases H−1(ak) where m = 2k.
We also observe that multiplication by a is a diffeomorphism between these two

Milnor fibers. We denote the image of F
(∗)
m by multiplication by a by aF

(∗)
m . Then,
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by e.g. the proof of [D3, Lemma 1.2], given δ > 0, there is an a > 0 so that

aF
(∗)
m ∩Bδ is the local Milnor fiber of V0, aF (∗)

m is transverse to the spheres of radii

≥ δ, and aF (∗)
m ∩Bδ ⊂ aF (∗)

m is a homotopy equivalence.
Also, we have the compact homotopy models which occur as submanifolds of

SUm of the form SUm for the general case, resp. SUm∩Symm(C) for the symmetric
case, resp. SUm ∩ Skm(C) for the skew-symmetric case. Now, for the standard
Euclidean norm on Mn(C), ‖A‖ =

√
m for A ∈ SUm. Then, as well this holds for

SUm ∩ Symm(C), and for SUm ∩ Skm(C). We denote the compact model in F
(∗)
m

by F
(∗) c
m . Then, in each case if M ≃ CN , F

(∗) c
m ⊂ S2N−1√

m
, the sphere of radius

√
m.

Thus, aF
(∗) c
m ⊂ S2N−1

a
√
m

.

Then, we first choose 0 < η << δ < 1 so that H : H−1(B∗
η) ∩ Bδ → B∗

η is the
Milnor fibration of H .

We choose 0 < a < η so that also a
√
m < δ. Then, we observe the composition

aF
(∗) c
m ⊂ aF

(∗)
m ∩ Bδ ⊂ aF

(∗)
m is a homotopy equivalence. Hence, The restriction

Φ : F
(∗) c
m × (0, a) → H−1(B∗

a) ∩ Bδ → B∗
a restricts to a homotopy equivalence for

each 0 < t < a and so gives a vanishing compact model. �

In light of Theorem 5.1, there are several natural problems to be solved involving
the characteristic cohomology for matrix singularities of each of the types.
Problems for the Characteristic Cohomology of the Milnor Fibers of Matrix Singu-
larities:

1) Determine the characteristic subalgebras as the images of the exterior alge-
bras by detecting which monomials map to nonzero elements in H∗(Vw;R).

2) Identify geometrically these non-zero monomials in 1) via the pull-backs of
the Schubert classes.

3) For the symmetric case with Z/2Z-coefficients, compute the Stiefel-Whitney

classes of the pull-back of the vector bundle Ẽm.
4) Determine a set of module generators for the cohomology of the Milnor

fibers as modules over the characteristic subalgebras.

We will give partial answers to these problems in the next sections.

6. Kite Spaces of Matrices for Given Flag Structures

We begin by introducing for a flag of subspaces for Cm, a linear kite subspace of
size k in the space of m ×m matrices of any of the three types: general Mm(C),
symmetric Symm(C), or skew-symmetric Skm(C) (with m even). We initially con-
sider the standard flag for Cm, given by 0 ⊂ C ⊂ C2 ⊂ · · · ⊂ Cm−1 ⊂ Cm. We
choose coordinates {x1, · · · , xm} for Cm so that {x1, · · · , xk} are coordinates for
Ck for each k.

We let Ei,j denote the m ×m matrix with entry 1 in the (i, j)-position and 0

otherwise. We also let E
(sy)
i,j = Ei,j + Ej,i, i < j, or E

(sy)
i,i = Ei,i for the space of

symmetric matrices; and E
(sk)
i,j = Ei,j − Ej,i, for i < j. Then, we define

Definition 6.1. For each of the three types of m×m matrices and the standard
flag of subspaces of Cm, the corresponding linear kite subspace of size ℓ is the linear
subspace of the space of matrices defined as follows:

i) For Mm(C), it is the linear subspace Km(ℓ) spanned by
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


∗ · · · ∗ 0 · · · 0
· · · · · · · · · 0 · · · 0
∗ · · · ∗ 0 · · · 0
0 · · · 0 ∗ · · · 0

0 · · · 0 0
. . . 0

0 · · · 0 0 · · · ∗




Figure 1. Illustrating the form of elements of a linear kite space of
size ℓ in either the space of general matrices or symmetric matrices.
For general matrices the upper left matrix of size ℓ× ℓ is a general
matrix, while for symmetric matrices it is symmetric.

{Ei,j : 1 ≤ i, j ≤ ℓ} ∪ {Ei,i : ℓ < i ≤ m}

ii) For Symm(C), it is the linear subspace K
(sy)
m (ℓ) spanned by

{E(sy)
i,j : 1 ≤ i ≤ j ≤ ℓ} ∪ {Ei,i : ℓ < i ≤ m}

iii) For Skm(C) with m even, for ℓ also even, it is the linear subspace K
(sk)
m (ℓ)

spanned by

{E(sk)
i,j : 1 ≤ i < j ≤ ℓ} ∪ {E(sk)

2i,2i+1 : ℓ < 2i < m}

Furthermore, we refer to the germ of the inclusion i(∗)m (ℓ) : K
(∗)
m (ℓ), 0→M, 0, for

each of the three cases as a linear kite map of size ℓ.

The general form of elements “the kites” in the linear kite subspaces have the
form given in (6.1).

(6.1) Qℓ,m−ℓ =

(
Aℓ 0ℓ,m−ℓ

0m−ℓ,ℓ Dm−ℓ

)

where Aℓ is an ℓ × ℓ-matrix which denotes an arbitrary matrix in either Mℓ(C),
resp. Symℓ(C), resp. Skℓ(C); and 0r,s denotes the zero r × s matrix.. Also, Dm−ℓ

denotes an arbitrary (m− ℓ)× (m− ℓ) diagonal matrix in the general or symmetric
case as in Figure 6. In the skew symmetric case, Dm−ℓ denotes the 2 × 2 block
diagonal matrix with skew-symmetric blocks of the form given by (6) as in Figure
2.

J1(∗) =

(
0 ∗
−∗ 0

)

with “* ”denoting an arbitrary entry.

We next extend this to general flags, and then to nonlinear subspaces as follows.
For each of the three types of matrices M =, resp. Mm(C), resp. Symm(C), resp.
Skm(C) (with m even).



24 JAMES DAMON




∗ · · · ∗ 0 · · · 0
· · · · · · · · · 0 · · · 0
∗ · · · ∗ 0 · · · 0
0 · · · 0 J1(∗) · · · 0

0 · · · 0 0
. . . 0

0 · · · 0 0 · · · J1(∗)




Figure 2. Illustrating the form of elements of a linear “skew-
symmetric kite”space of size ℓ (with ℓ even) in the space of skew-
symmetric matrices. The upper left ℓ × ℓ matrix is a skew-
symmetric matrix.




x1,1 + 2x4,4x1,3 x1,2 + 2x4,4x2,3 x1,3 + 2x4,4x3,3 0
x1,2 + 2x4,4x2,3 x2,2 − 35x1,2x4,4 x2,3 (7x1,2 − 5)x4,4
x1,3 + 2x4,4x3,3 x2,3 x3,3 0

0 (7x1,2 − 5)x4,4 0 x4,4




Figure 3. An example of an unfurled kite map of size 3 into 4×4
symmetric matrices.

Definition 6.2. An unfurled kite map of given matrix type is any element of
the orbit of i(∗)m (ℓ), for (∗) = (), resp. (sy), resp.(sk), under the corresponding
equivalence group KHM .

A germ f0 : Cn, 0 → M, 0 contains a kite map of size ℓ for each of the three

cases if there is a germ of an embedding g : K
(∗)
m (ℓ), 0 → Cn, 0 such that f0 ◦ g is

an unfurled kite map.

Remark 6.3. We note that unfurled kite maps have the property that the stan-
dard flag can be replaced by a general flag; and moreover, the flag and linear kite
space can undergo nonlinear deformations. These can be performed by iteratively
applying appropriate row and column operations using elements of the local ring
of germs on Cn, 0 instead of constants.

A simple example of an unfurled kite map is given in Figure 3.

7. Detecting Characteristic Cohomology using Kite Spaces of

Matrices

In §5, we gave in equations (5.1), (5.3), and (5.4) the cohomology of the Mil-

nor fibers for the D(∗)
m for each of the three types of matrices. Thus, as for any

matrix singularity f0 : Cn, 0 → M, 0, by Theorem 5.1 the characteristic subal-
gebra is a quotient of the corresponding algebra. As previously in §5, we let

E = Λ∗R{ei1 , . . . , eiℓ} ⊆ H∗(F (∗),c
m ;R) denote an exterior algebra on generators

of the ℓ lowest degrees. Then, using the map λE given before Proposition 5.3, λ∗E
induces an isomorphism from E to its image. We next use λE to show that for
germs f0 containing a kite map of size ℓ for each case detects E in A(∗)(f0, R).
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Theorem 7.1. Let f0 : Cn, 0 → M, 0 define an m ×m matrix singularity of one
of the three types.

a) In the case of general matrices, if f0 contains an unfurled kite map of size
ℓ < m, then A(f0, R) contains an exterior algebra of the form

Λ∗R〈e3, e5, . . . , e2ℓ−1〉 .
on ℓ− 1 generators.

b) In the case of skew-symmetric matrices (with m even), if f0 contains an
unfurled skew-symmetric kite map of size ℓ(= 2k) < m, then A(sk)(f0, R)
contains an exterior algebra of the form

Λ∗R〈e5, e9, . . . , e4k−3〉 .
on k − 1 generators.

c) In the case of symmetric matrices, if f0 contains an unfurled symmetric
kite map of size ℓ < m, then A(sy)(f0, R) contains an exterior algebra of
one of the forms

Λ∗k〈e3, e5, . . . , e2ℓ−1〉 if R = k is a field of characteristic 0,

Λ∗Z/2Z〈e2, e3, . . . , eℓ〉 if R = Z/2Z ,

Remark 7.2. In the symmetric case, it follows from c) that if f0 contains an
unfurled symmetric kite map of size ℓ < m, then the Stiefel-Whitney classes of the
pull-back bundle wi(f

∗
0,w(Ẽm)) on Vw are non-vanishing for i = 2, . . . , ℓ.

Proof. By Theorem 5.1 and the Detection Lemma 3.2, it is sufficient to show that
the corresponding kite maps of each type detect the corresponding exterior sub-
algebra. We use the notation from the proof of Proposition 5.3 which gave the
vanishing compact models for the Milnor fibers in each case.

Then, we choose 0 < η << ε < δ < 1 so that H : H−1(B∗
η) ∩ Bδ → B∗

η is the

Milnor fibration of H and H ◦ i(∗)m (ℓ) : (H ◦ i(∗)m (ℓ))−1(B∗
η)∩Bε → B∗

η is the Milnor

fibration of H ◦ i(∗)m (ℓ). We also choose 0 < a < η so that a
√
m < ε.

Then there are the following inclusions.

(7.1) aF
(∗) c
ℓ ⊂ i(∗)m (ℓ)(H ◦ i(∗)m (ℓ))−1(ar) ∩Bε) ⊂ aF (∗)

m ∩Bε ⊂ aF (∗)
m ,

where r = m in the general or symmetric case or r = m
2 in the skew-symmetric

case. The composition of inclusions F
(∗) c
ℓ ⊂ F (∗) c

m ⊂ F (∗)
m commutes with multipli-

cation by a as in Figure 10.1 where each vertical map is a diffeomorphism given by
multiplication by a.

(7.2)

F
(∗) c
ℓ −−−−→ F

(∗) c
m −−−−→ F

(∗)
m

y
y

y

aF
(∗) c
ℓ

i
(∗)
m (ℓ)−−−−→ aF

(∗) c
m −−−−→ aF

(∗)
m

Also, i(∗)m (ℓ) in the bottom row is given by the map in (7.3).

(7.3) aA 7→ aQℓ,m−ℓ =

(
aAℓ 0ℓ,m−ℓ

0m−ℓ,ℓ aDm−ℓ

)

Then, by Proposition 5.2 the induced homomorphisms in cohomology for the top
row of (10.1) restrict to an isomorphism on the corresponding exterior subalgebra



26 JAMES DAMON

of H∗(F (∗)
m ;R) onto the cohomology H∗(F (∗) c

ℓ ;R), and vanishing on the remaining
generators. Hence, as the vertical diffeomorphisms induce isomorphisms on coho-
mology, the induced homomorphisms on cohomology for the bottom row have the
same property. Lastly, in (7.1), the induced homomorphisms in cohomology re-

strict to an isomorphism on the corresponding exterior subalgebra of H∗(F (∗) c
m ;R)

to H∗(aF (∗) c
ℓ ;R). Thus the induced homomorphism to the Milnor fiber of i(∗)m (ℓ),

H∗(aF (∗) c
m ;R) −→ H∗(H ◦ i(∗)m (ℓ))−1(ar) ∩Bε;R)

restricts to an isomorphism of the corresponding exterior algebra onto its image.
Thus, the cohomology of the Milnor fiber of H ◦ i(∗)m (ℓ) contains the claimed exterior

subalgebra. Thus, the flag map i(∗)m (ℓ) detects the corresponding exterior algebra,
so the result follows by the Detection Lemma. �

8. Examples of Matrix Singularities Exhibiting Characteristic

Cohomology

We consider several examples illustrating Theorem 7.1.




x1,1 + 2x4,4x1,3 x1,2 + 2x4,4x2,3 x1,3 + 2x4,4x3,3 y1
x1,2 + 2x4,4x2,3 x2,2 − 35x1,2x4,4 x2,3 + y1x

2
1,1 (7x1,2 − 5)x4,4

x1,3 + 2x4,4x3,3 x2,3 + y1x
2
1,1 x3,3 + y2x

2
2,2 y2

y1 (7x1,2 − 5)x4,4 y2 x4,4




Figure 4. An example of a germ f0 containing an unfurled kite
map of size 3 into 4× 4 symmetric matrices in Figure 3.

Example 8.1. Let f0;C
9, 0 → Sym4(C), 0 be defined by f0(x,y) given by the

matrix in Figure 4 for x = (x1,1, x1,2, x1,3, x2,2, x2,3, x3,3, x4,4) and y = (y1, y2). We

let V0 = f−1
0 (D(sy)

4 ). This is given by the determinant of the matrix in Figure 4
defining f0. Then, V0 has singularities in codimension 2. We observe that when
y = (0, 0) we obtain the unfurled kite map in Figure 3. Thus, by Theorem 7.1, the
Milnor fiber of V0 has cohomology with Z/2Z coefficients containing the subalgebra
Λ∗Z/2Z〈e2, e3〉, so there is Z/2Z cohomology in degrees 2, 3, and 5. We also note

that ej = wj(f
∗
0,wẼ4) so that one consequence is that the second and third Stiefel-

Whitney classes of the pullback of the vector bundle Ẽ4 are non-zero.
For coefficients a field k of characteristic 0, the cohomology of the Milnor fiber

of V0 has an exterior algebra Λ∗k〈e5〉, so there is a k generator e5 in degree 5.
By Kato-Matsumota [KM], as singularities have codimension 2, the Milnor fiber

is simply connected. Then, we can use the preceding to deduce information about
the integral cohomology of the Milnor fiber from the universal coefficient theorem.
It must have rank at least 1 in dimension 5, and it has 2-torsion in dimension 2.

Second, we consider a general matrix singularity.

Example 8.2. We let f0;C
21, 0→M5(C), 0 be defined with f0(x,y) given by the

matrix in Figure 5 for x = (x1,1, . . . , x4,4, x5,5) and y = (y1, y2, y3, y4). In this

example we require that gi(x, 0) ≡ 0 for each i . We let V0 = f−1
0 (D5). This is

given by the determinant of the matrix in Figure 5 defining f0. Then, the V0 has
singularities in codimension 4 in C21; hence by Kato-Matsumoto, the Milnor fiber
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


x1,1 x1,2 x1,3 x1,4 g1(x,y)
x2,1 x2,2 x2,3 x2,4 g2(x,y)
x3,1 x3,2 x3,3 x3,4 g3(x,y)
x4,1 x4,2 x4,3 x4,4 g4(x,y)
y1 y2 y3 y4 x5,5




Figure 5. An example of a germ f0 in Example 8.2, containing a
linear kite map of size 4 into 5×5 general matrices with gi(x, 0) ≡ 0
for each i).

is 2-connected. We observe that when y = (0, 0, 0, 0) we obtain the linear kite map
i5(4). Thus, by Theorem 7.1, the Milnor fiber of V0 has characteristic cohomology
with integer coefficients containing the subalgebra Λ∗Z〈e3, e5, e7〉. Hence, the inte-
ger cohomology has rank at least 1 in dimensions 0, 3, 5, 7, 8, 10, 12, 15. We cannot
determine at this point whether the generator e9 maps to a nonzero element in the
cohomology of the Milnor fiber of V0. Even if it does, there are several products
involving e9 in exterior algebra for the cohomology of D5 must map to 0, as the
Milnor fiber is homotopy equivalent to a CW-complex of dimension 20.

9. Characteristic Cohomology for the Complements and Links of

Matrix Singularities

We now turn to the characteristic cohomology of the complement and link for
matrix singularities of all three types. In order to apply the earlier results to
the cases of matrix singularities, we first recall in Table 2 the cohomology, with
coefficients a field k of characteristic 0, of the complements and links as given in
[D3, table 2]. We will then use the presence of kite maps to detect both subalgbras
of C(∗)(f0, R) for the complements and subgroups of B(∗)(f0,k) for the links.

Theorem 9.1. Let f0 : Cn, 0 → M, 0 define a matrix singularity V0 of any of the
three types. If f0 contains a kite map of size ℓ, then the characteristic cohomology
of the complement C(∗)(f0,k), for a field k of characteristic 0, contains an exterior
algebra given by Table 3.

Furthermore, the characteristic cohomology of the link B(∗)(f0,k), as a graded
vector space contains the graded subspace given by truncating the exterior subalgebra
of C(∗)(f0,k) listed in column 2 of Table 3 in the top degree and shifting by the
amount listed in the last column.

For the complements in the general and skew-symmetric cases, k may be replaced
by any coefficient ring R.

Remark 9.2. In what follows to simplify statements, instead of referring to the
complement of V0, 0 ⊂ Cn, 0 as Bε\V0 for sufficiently small ε > 0, we will just
refer to the complement as Cn\V0, with the understanding that it is restricted to
a sufficiently small ball.

Proof of Theorem 9.1. The proof is similar to that for Theorem 7.1. As the state-
ments are independent of f0 in a given KV -equivalence class, we may apply an
element of KH to obtain an f0 containing a linear kite map. It is sufficient to
show, as for the case of Milnor fibers, that the linear kite map detects the indicated
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Determinantal Complement H∗(M\D,k) ≃ Shift
Hypersurface M\D H∗(K/L,k)
Dsy

m GLm(C)/Om(C) Λ∗k〈e1, e5, . . . , e2m−1〉
(
m+1
2

)
− 2

(m = 2k+1) ∼ Um/Om(R)

Dsy
m GLm(C)/Om(C) Λ∗k〈e1, e5, . . . , e2m−3〉

(
m+1
2

)
+m− 2

(m = 2k)
Dm GLm(C) ∼ Um Λ∗k〈e1, e3, . . . , e2m−1〉 m2 − 2

Dsk
m GL2k(C)/Spk(C) Λ∗k〈e1, e5, . . . , e2m−3〉

(
m
2

)
− 2

(m = 2k) ∼ U2k/Spk
Table 2. The cohomology of the complements M\D and links
L(D) for each determinantal hypersurface D. The complements,
are homotopy equivalent to the quotients of maximal compact sub-
groups K/L with cohomology given in the third column, where the
generators of the cohomology ek are in degree k; and the structure
is an exterior algebra. For the links L(D), the cohomology is iso-
morphic as a vector space to the cohomology of the complement
truncated in the top degree and shifted by the degree indicated in
the last column.

subalgebra in C(∗)(f0,k), and then apply Alexander duality for the result for the
link.

By the results in [D3] summarized in Table 2, the complement M\D(∗)
m is given

by a homogeneous space G/H which has as a compact homotopy model (K/L)
where K = Um for each of the cases. For successive values of m, we have for the
three cases the successive inclusions:

i) for the general case, GLm(C) →֒ GLm+1(C) by A 7→
(
A 0
0 1

)
;

ii) for the symmetric case, GLm(C) →֒ GLm+1(C) sending A 7→
(
A 0
0 1

)

induces an inclusion GLm(C)/Om(C) →֒ GLm+1(C)/Om+1(C);

iii) for even m = 2k, GLm(C) →֒ GLm+2(C) sending A 7→
(
A 0
0 I2

)
, for

I2 the 2 × 2 identity matrix, induces an inclusion GLm(C)/Spk(C) →֒
GLm+2(C)/Spk+1(C).

Then, these are obtained by the action of GLm(C) on the appropriate spaces of
matrices. They restrict to the compact homogenenous spaces which are homotopy
equivalent models for the complements, given in Table 2 and which we denote by
K/L for each of the three cases. Also, the inclusions correspond to the following
inclusions of spaces of matrices.

i) for the general case, Mm(C) →֒Mm+1(C) by A 7→
(
A 0
0 1

)
;

ii) for the symmetric case, Symm(C) →֒ Symm+1(C) sending A 7→
(
A 0
0 1

)
;

iii) for even m = 2k, Skm(C) →֒ Skm+2(C) sending A 7→
(
A 0
0 J1

)
, for the

2× 2 skew-symmetric matrix J1 =

(
0 1
−1 0

)
.
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Furthermore, for the cohomology of these spaces (via their homotopy equivalent
compact models K/L for each case) the maps induced by the inclusions sends
ej 7→ ej for the nonzero generators in successive spaces.

Via these inclusions, the corresponding actions of GLm(C) on these spaces (as
explained in [D3]) applied to either Im for the general or symmetric case, or Jk for
the skew symmetric case factor through the homogeneous spaces given in Table 2

to give diffeomorphisms to the complements of D(∗)
m in each case. The inclusions of

the homogeneous spaces correspond to the inclusions of the spaces of nonsingular
matrices. Under this correspondence, the cohomology of the homogeneous spaces
gives the cohomology of the complements of the spaces of m×m singular matrices

M
(∗)
m \D(∗)

m . Here we let M
(∗)
m denotes the space of m ×m matrices of appropriate

type.
Just as for Milnor fibers, we use multiplication to define a vanishing compact

model. We let P(∗) ⊂ M
(∗)
m \D(∗)

m denote the compact model for the complement
in each of the three cases. The action of Um in each case gives elements A of the
compact model to be products of elements of Um and hence ‖A‖ =

√
m. Thus,

P(∗) ⊂ B√
m. Then, we can multiply the spaces of matrices by nonzero constants

a and for each case a · P(∗) ⊂ Ba
√
m. Then, for a neighborhood Bδ of 0 in M

(∗)
m , if

a
√
(m) < δ, then a · P(∗) ⊂ Bδ\D(∗)

m .

Then, we define Φ : P(∗) × (0, a)→M
(∗)
m \D(∗)

m sending Φ(A, t) = t · A. Then, Φ
defines a vanishing compact model for the complement for each case.

It remains to show that the kite map of size ℓ detects the corresponding exterior
algebra given in Table 3 for the characteristic cohomology of the complement. We

consider i(∗)m (ℓ) : Kℓ(C) ∩ Bε → M
(∗)
m . If M

(∗)
ℓ denotes the embedding of the

corresponding ℓ × ℓ matrices given above, then there is an a > 0 so that aM
(∗)
ℓ ⊂

Km(ℓ) ∩Bε. Then, as in the proof of Theorem 7.1, the composition

a(M
(∗)
ℓ \D

(∗)
ℓ ) ⊂ (Km(ℓ)\D(∗)

m ) ∩Bε

i
(∗)
m (ℓ)−→ M (∗)

m \D(∗)
m

induces in cohomology an isomorphism from the exterior subalgebra given in Table

3 to a subalgebra of the cohomology of a(M
(∗)
ℓ \D

(∗)
ℓ ) (since it is diffeomorphic to

M
(∗)
ℓ \D

(∗)
ℓ ). As this homomorphism factors through H∗(Cn\V0;k), it is also an

isomorphism onto a subalgebra of this cohomology. This shows that i(∗)m (ℓ) detects
the exterior algebra, so by the second Detection lemma, the result follows for the
complement.

Lastly, let Γ̃(∗)(f0,k) denote the graded subspace of reduced homology obtained
from the Kronecker dual Γ(∗)(f0,k) to this subalgebra. Then, by Alexander duality

we obtain a graded subspace of H∗(L(V0);k) isomorphic to Γ̃(∗)(f0,k). It remains
to show it is obtained from the exterior algebra by truncating it and applying an
appropriate shift. As the exterior algebra satisfies Poincare duality under multipli-
cation, this is done using the same argument in the proof of [D3, Prop. 1.9]. �

We reconsider the examples from §8

Example 9.3. In Example 8.1, we considered a singularity V0 defined by f0;C
9, 0→

Sym4(C), 0 given by the matrix in Figure 4. It contains an unfurled kite map of
size 3. We can apply Theorem 9.1.
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Determinantal C(∗)(f0,k) Shift for Link
Hypersurface Type contains subalgebra

Dsy
m Λ∗k〈e1, e5, . . . , e2ℓ−1〉 2n−

(
ℓ+1
2

)
− 2

ℓ odd

Dsy
m Λ∗k〈e1, e5, . . . , e2ℓ−3〉 2n−

(
ℓ
2

)
− 2

ℓ even
Dm Λ∗k〈e1, e3, . . . , e2ℓ−1〉 2n− ℓ2 - 2

Dsk
m (m = 2k) Λ∗k〈e1, e5, . . . , e2ℓ−3〉 2n−

(
ℓ
2

)
− 2

ℓ even
Table 3. The characteristic cohomology with coefficients in a
field k of characteristic 0 for V0 = f−1

0 (V) for each matrix type

V = D(∗)
m . If f0 contains an unfurled kite map of size ℓ, the char-

acteristic cohomology C(∗)(f0,k) contains an exterior subalgebra
given in column 2 (where ej has degree j). Then, for the link
L(V0), the characteristic cohomology contains as a graded sub-
space the exterior algebra in column 2 truncated in the top degree
and shifted by the degree indicated in the last column. For the
complements in the general or skew-symmetric cases, k in column
2 may be replaced by any coefficient ring R.

For coefficients a field k of characteristic 0, from Table 3 the characteristic coho-
mology of the complement of C(sy)(f0,k) contains an exterior algebra Λ∗k〈e1, e5〉,
so there are k-vector space generators e1, e5, and e1 · e5 in degrees 1, 5 and 6.

The characteristic cohomology B(sy)(f0,k) of the link of V0, contains the sub-
space obtained by upper truncating the exterior algebra to obtain the k vector
space k〈1, e1, e5〉 and shifting by 2 · 9 − 2 −

(
4
2

)
= 10 to obtain 1-dimensional gen-

erators in degrees 10, 11, and 15. We note that the Link L(V0) has real dimension
15, so a vector space generator of the characteristic subalgebra generates the top
dimensional class.

We also note that from Table 2 that D(sy)
4 has link cohomology given by the

upper truncated Λ∗k〈e1, e5〉 but shifted by
(
5
2

)
+4−2 = 12 so there is 1 dimensional

cohomology in degrees 12, 13, and 17. Thus, f∗
0 does not send any of these classes

to nonzero classes in the characteristic cohomology.

We do note that for the kite map i
(sy)
4 (3) : C7, 0→ Sym4(C), 0 the characteristic

cohomology for the link is the upper truncated exterior algebra giving the k vector
space k〈1, e1, e5〉 and then shifted by 6. Thus, its degrees are 6, 7 and 11. We see
that as noted in Remark 1.8, there is a shift in degrees given by twice the difference
in dimension between each of the maps.

Second, we return to Example 8.2.

Example 9.4. From Example 8.2, the singularity V0 = f−1
0 (D5) is defined by

f0;C
21, 0→M5(C), 0, given by the matrix in Figure 5. Also, f0 contains the linear

kite map of size 4. Thus, we may apply Theorem 9.1, the characteristic cohomol-
ogy C(f0, R), for any coefficient ring R, contains the subalgebra Λ∗R〈e1, e3, e5, e7〉.
Hence, characteristic cohomology of the complement has R rank at least 1 in all
degrees between 0 and 16, except for 2 and 14, and it is rank at least 2 in degree 8.
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The characteristic cohomology B(sy)(f0,k) of the link contains the subspace ob-
tained by upper truncating the exterior algebra over k obtained from the same k
vector space by removing the generator of degree 16 given by the product e1·e5·e7·e9.
Then, we shift the resulting vector space by 2 · 21 − 2 − 42 = 24 to obtain 1-
dimensional generators in all degrees between 24 and 39, except for 26 and 38,
and it is dimension at least 2 in degree 32. We note that the Link L(V0) has real
dimension 39, so again a vector space generator of the characteristic subalgebra
generates the top dimensional class.

10. Characteristic Cohomology for Non-square Matrix Singularities

We extend the results for m × m general matrices and matrix singularities to
non-square matrices.

General m× p Matrix Singularities with m ≥ p:
Let M = Mm,p(C) denote the space of m × p complex matrices (where we will

assume m 6= p, with neither = 1). We consider the case where m > p. The
other case m < p is equivalent by taking transposes. The varieties of singular
m× p complex matrices, Dm,p ⊂Mm,p(C), with m 6= p were not considered earlier
because they do not have Milnor fibers. However, the methods we applied earlier
to m × m general matrices will also apply to the complement and link of Dm,p.
We explain that the complement has a compact homotopy model given by a Stiefel
manifold. As for the case of m×m matrices, it has a Schubert decomposition using
the ordered factorization by “pseudo-rotations” due to the combined work of J. H.
C. Whitehead [W], C. E. Miller [Mi], and I. Yokota [Y]. The Schubert cycles give
a basis for the homology and the Kronecker dual cohomology classes which can
be identified with the classes computed algebraically in [MT, Thm. 3.10] (or see
e.g. [D3, §8]). Thus, for appropriate coefficients, the form of both CV(f0, R) and
BV(f0,k) can be given for V = Dm,p and f0 : C, 0→Mm,p(C), 0.

Then, we use the Schubert structure on the Stiefel manifolds to define vanishing
compact models. This allows us to define, as for the m ×m case, kite subspaces
and maps to detect nonvanishing characteristic cohomology of the complement and
link.

Complements of the Varieties of Singular m× p Matrices.
Let M = Mm,p(C) denote the space of m × p complex matrices. The varieties

of singular m× p complex matrices, Dm, p, with m 6= p were not considered earlier
because they do not have Milnor fibers. However, the methods do apply to the
complement and link as a result of work of J. H. C. Whitehead [W]. We consider
the case where m > p. The other case m < p is equivalent by taking transposes.
The complement to the variety Dm,p of singular matrices and can be described as
the ordered set of p independent vectors in Cm. Then, the Gram-Schmidt procedure
replaces them by an orthonormal set of p vectors in Cm. This is the Stiefel variety
Vp(C

m) and the Gram-Schmidt procedure provides a strong deformation retract of
the complement M\Vm,p onto the Stiefel variety Vp(C

m). Thus, the Stiefel variety
is a compact model for the complement.

Schubert Decomposition for the Stiefel Variety.
The work of Whitehead [W], combined with that of C. E. Miller [Mi], and I.

Yokota [Y], provides a Schubert-type cell decomposition for Vp(C
m) similar to that

given in the m×m case. There is an action of GLm(C)×GLp(C) onMm,p(C) which
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is appropriate for considering KM equivalence ofm×p complex matrix singularities.
However, just for understanding the topology of the link and complement of Dm, p
it is sufficient to consider the left action of GLm(C) acting on M with an open
orbit consisting of the matrices of rank p. As explained in [D4], the complement
Mm.p(C)\Dm,p is diffeomorphic to the homogeneous space GLm(C)/GLm−p(C).

The diffeomorphism is induced byGLm(C)→Mm,p(C) given by A 7→ A·
(

Ip
0m−p,p

)
.

Here the subgroup GLm−p(C) represents the subgroup of elements

(
Ip 0
0 A

)
with

A ∈ GLm−p(C). This gives the isotropy subgroup of the left action on

(
Ip

0m−p,p

)
.

For successive values of m, we have the successive inclusions: GLm−1(C) →֒
GLm(C) by A 7→

(
1 0
0 A

)
. These induce inclusions im−1,p−1 : GLm−1(C)/GLm−p(C) →֒

GLm(C)GLm−p(C). There is a corresponding inclusion of the spaces of matrices

Mm−1,p−1(C) →֒ Mm,p(C) by B 7→
(
1 0
0 B

)
. This inclusion induces a map of the

complements of the varieties of singular matrices ĩm−1,p−1 :Mm−1,p−1(C)\Dm−1,p−1 →֒
Mm,p(C)\Dm,p

The actions of the groups on the spaces of matrices commute via the inclusions
of the groups with the corresponding inclusions of spaces of matrices. Thus, we
have a commutative diagram of diffeomorphisms and inclusions

(10.1)

GLm−1(C)/GLm−p(C)
im−1,p−1−−−−−−→ GLm(C)/GLm−p(C)

≃
y ≃

y

Mm−1,p−1(C)\Dm−1,p−1
ĩm−1,p−1−−−−−−→ Mm,p(C)\Dm,p

The homogenenous spaces GLm(C)/GLm−p(C) are homotopy equivalent to the
homogenenous spaces given as the quotient of their maximal compact subgroups
Um/Um−p. Via the vertical isomorphism in (10.1), it is diffeomorphic to the Stiefel
variety Vp(C

m).
The Schubert cell decomposition of Vp(C

m) is given via ordered factorizations
of matrices in Um into products of “pseudo-rotations”. For this we use the reverse
flag with ẽj = em+1−j for j = 1, . . . ,m and Ck spanned by {ẽ1, . . . , ẽk}. Then any
B ∈ Um can be uniquely written by a factorization in decreasing order.

(10.2) B = A(θk,vk) · · ·A(θ2,v2) ·A(θ1,v1) ,

with vj ∈min Cmj and 1 ≤ m1 < m2 < · · · < mk ≤ m, and each θi 6≡ 0mod 2π.
Here vj ∈min Cmj means vj ∈ Cmj but vj 6∈ Cmj−1. Also, each A(θj ,vj) is a pseudo-

rotation about C < vj >, which is the identity on C < vj >
⊥ and multiplies vj

by eθj i. In [D4, §3] the results are given for increasing factorizations,; however,
as explained there, the results equally well hold for decreasing factorizations. If
mk′ > m− p ≤ mk′+1 , then each A(θj ,vj) for j > k belongs to Um−p. Hence, B is
in the same Um−p-coset as

B′ = = A(θk,vk) · · ·A(θk,vk) .

Then, the projections pm,p : Um → Um/Um−p of the Schubert cells Sm for m =
(m1, . . . ,mk) with m − p < m1 < · · · < mk ≤ m give a cell decomposition for
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Um/Um−p ≃ Vp(C
M ). Furthermore, the closures Sm are “singular manifolds” the

schubert cycles, which have Borel-Moore fundamental classes (see e.g. comment
after [D4, Thm. 3.7]).

Cohomology of the Complement and Link.
We can give a relation between the homology classes given by the Schubert cy-

cles resulting from the Whitehead decomposition and the cohomology with integer
coefficients of the Stiefel variety, and hence the complement of the variety Dm,n

(computed in [MT, Thm. 8.10a]).

Theorem 10.1. The homology of the complement of Dm,p (≃ H∗(Vp(Cm);Z)) has
for a free Z-basis the fundamental classes of the Schubert cycles, given as images
pm,p ∗(Sm), with m = (m1,m2, . . .mk) for m− p < m1 < · · ·mk ≤ m, as we vary
over the Schubert decomposition of Um/Um−p. The Kronecker duals of these classes
give the Z-basis for the cohomology, which is given as an algebra by

(10.3) H∗(Mm,p\Dm,p;Z) ≃ Λ∗Z〈e2(m−p)+1, e2(m−p)+3, . . . , e2m−1〉
with degree of ej equal to j.

Moreover, the Kronecker duals of the simple Schubert classes S(m1) for m− p <
m1 ≤ m are homogeneous generators of the exterior algebra cohomology.

Proof. The computation of H∗(Vp(Cm) is given in [D4, Thm. 3.7]. As it is a
homotopy model for the complement (10.3) follows.

Second, that the Schubert cycles form a basis for the homology follows exactly
as in the proof of [D4, Thm 6.1], as does the proof that the Kronecker duals to the
simple Schubert cycles provide homogeneous generators of the exterior algebra. �

Cohomology of the Link.
As a consequence ofTheorem 10.1, we obtain the following conclusion for the

link.

Theorem 10.2. For the variety of singular m × p complex matrices, Dm,p (with
m > p), the cohomology of the link is given (as a graded vector space) as the upper
truncated cohomology H∗(Mm,p\Vm,p,k) given in (10.3) and shifted by p2 − 2.

The Alexander duals of the Schubert cycles of nonmaximal dimension give a basis
for the cohomology of the link.

Kite Spaces and Maps for m× p Matrix Singularities with m ≥ p:
Definition 10.3. For m × p matrices with m > p, with p 6= 1 and the reverse
standard flag of subspaces of Cm, the corresponding linear kite subspace of length
ℓ is the linear subspace of the space of matrices defined as follows: For Mm,p(C),
it is the linear subspace Km,p(ℓ) spanned by

{Ei,j : r + 1 ≤ i ≤ m, r + 1 ≤ j ≤ p} ∪ {Ei,i : 1 ≤ i ≤ r}
where r = p− ℓ.

Furthermore, we refer to the germ of the inclusion im,p(ℓ) : Km,p(ℓ), 0 →
Mm,p(C), 0, for each of the three cases as a linear kite map of size ℓ. Further-
more, a germ which is KM equivalent to im,p(ℓ) will be refered to as an unfurled
kite map of length ℓ. We also say that a germ f0 : Cn, 0 → Mm,p(C), 0 contains a
kite map of length ℓ if there is an embedding g : Km,p(ℓ), 0→ Cn, 0 so that f0 ◦ g
is an unfurled kite map of colength ℓ.
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


∗ · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
0 · · · ∗ 0 · · · 0
0 · · · 0 ∗ · · · ∗
0 · · · 0 ∗ . . . ∗
0 · · · 0 ∗ · · · ∗




Figure 6. Illustrating the form of elements of a linear kite space
of length ℓ in the space of generalm×pmatrices with r = p−ℓ. The
upper r× r left matrix is a diagonal matrix with arbitrary entries,
and the lower right matrix is a general matrix of size (m − r) ×
(p− r).

The general form of elements, “the kites” in the linear kite subspaces have the
form given in (10.4) and the general element is exhibited in Figure 6.

Remark 10.4. Although the body of the kite is not square, the length ℓ denote
the rank of a generic matrix in the body, which is consistent with the square case
when m = p. We note that to be consistent with the form of the matrices for the
group representation of the complement and the Schubert decomposition for the
nonsquare case, the kite is “upside down”. However, elements of KM allow for the
composition with invertible matrices GLm and GLp with entries in the local ring
of germs. This allows for a linear change of coordinates so the kite can be inverted
to the expected form as for the m×m case.

(10.4) Qℓ,m−ℓ =

(
Dr 0m−r,p−r

0m−r,p Am−r,p−r

)

where r = p − ℓ and Am−r,p−r is an (m − r) × (p − r)-matrix which denotes an
arbitrary matrix in Mm−r,p−r(C). Also, 0q,s denotes a 0-matrix of size q × s and
Dr, an arbitrary r × r diagonal matrix as in Figure 6. .

We have an analogue of the detection result for case of m×m general matrices.

Theorem 10.5. Let f0 : Cn, 0 → Mm,p(C), 0 define a matrix singularity. If f0
contains a kite map of length ℓ, then the characteristic cohomology of the comple-
ment C(∗)(f0,k), for a field k of characteristic 0, contains the exterior algebra given
by

(10.5) Λ∗k〈e2(m−p)+1, e2(m−p)+3, . . . , e2(m−p)+2ℓ−1〉
and each ej has degree j.

Furthermore, the characteristic cohomology of the link B(∗)(f0,k), as a graded
vector space contains the graded subspace given by truncating the top degree of the
exterior subalgebra (10.5) of C(∗)(f0,k) and shifting by 2n− 2− ℓ(2(m− p) + ℓ).

For the complement k may be replaced by any coefficient ring R.

Proof. The line of proof follows that for the m×m general case.
Under the inclusion im−1,p−1 : Vp−1(C

m−1) →֒ Vp(C
m), the identification of the

cohomology classes with Kronecker duals of the Schubert cycles implies

i∗m−1,p−1(e2(m−p+j)−1) = e2(m−p+j)−1 for 1 ≤ j ≤ p− 1 and i∗m−1,p−1(e2m−1) = 0 .
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If we compose successive inclusions ℓ times to give im−ℓ,p−ℓ : Vp−ℓ(C
m−ℓ) ←֓

Vp(C
m), then the induced map on cohomology has image the algebra given in

(10.5). Thus, given that Vp(C
m) provides a compact model for the complement,

and the composition im−1,p−1 ◦ im−2,p−2 ◦ · · · ◦ im−r,p−r with r = p− ℓ detects the
subalgebra in (10.5).

Now using the vanishing compact model t · Vp(Cm), we can follow the same
reasoning as for the m×m case using the functoriality and invariance under KDm,p

,
we may apply the Second Detection Lemma to obtain the result.

Then, as the exterior algebra satisfies Poincare duality under multiplication, we
can deduce the result for BDm,p

(f0,k) using the same argument in the proof of [D3,
Prop. 1.9] where for the shift 2n−2−dim RK we replace dim RK by the top degree
of the algebra (10.5). This is the same as dim RVp−r(C

m−r), which is

2(p− r)((m− r)− (p− r)) + (p− r)2 = (p− r)(2(m− p)− r) = ℓ(2(m− p) + ℓ) .

�

Example 10.6. Consider an example of a matrix singularity which is given by
f0 : C12, 0→M5,4(C), 0 defined by the matrix in Figure 7 for which all gi,j(x, 0) =
0. For y = (y1, y2, y3, y4), when y = 0, we see that f0 contains a kite map of




x1,1 x1,2 x1,3 g1,4(x,y) g1,5(x,y)
x2,1 x2,2 x2,3 g2,4(x,y) g2,5(x,y)

g3,1(x,y) g3,2(x,y) y3 x3,4 y4
y1 y2 g4,3(x,y) g4,4(x,y) x4,5




Figure 7. An example of a 5 × 4 matrix singularity f0, with
gi,j(x, 0) ≡ 0 for each (i, j). It contains a kite map of colength
2 given when all yi = 0.

colength 2. Then, Theorem 10.5 implies that CD4,3(f0,Z) contains a subalgebra
Λ∗Z〈e3, e5〉. Thus, also by Theorem 10.5, BD5,4(f0,Z) contains as a subgroup the
subalgebra upper truncated and then shifted by 2 ·12−2−(4−2)(2(5−4)+2) = 14.
Thus, the classes {1, e3, e5} are shifted by 14 to give classes in degrees 14, 17, 19.
As V0 = f−1

0 (D5,4 has codimension 2, the link L(V0) has dimension 19 and the
characteristic cohomology class in degree 19 generates the Kronecker dual to the
fundamental class of L(V0).

11. Cohomological Relations between Local Links via Restricted

Kite Spaces

Lastly, it is still not well understood how the structure of the strata for the
varieties of singular matrices contributes to the (co)homology of the links for the
various types of matrices. We use kite spaces for all of the cases to determine the
relation between the cohomology of local links for strata with the cohomology of
the global link. This includes as well the relation between the local links for strata
with local links of strata of higher codimension. This is via the relative Gysin
homomorphism defined as eqrefEqn1.15 in §1, which is an analog of the Thom
isomorphism theorem in these cases.

We do so by explaining how the kite subspaces provide transverse sections to the
strata of the varieties of singular matrices for all three cases of m×m matrices and
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also for general m × p matrices. To consider all cases simultaneously, we denote
the corresponding space of matrices by M and the variety of singular matrices by

D(∗)
∗ . Also, we consider the kite subspace of length ℓ of appropriate type which we

denote by K∗
∗(ℓ). For the m×m cases, we also let r = m− ℓ (which is the same as

p− ℓ when m = p) This will be the corank for generic matrices in the kite space.
We consider an affine subspace obtained by choosing fixed nonzero values at the

entries in the tail (e.g. the value 1). When the entries in the body of the kite are 0,
we obtain a matrix A of rank ℓ and hence corank r. Then, the resulting space has

the form A+M ′ where M ′ denotes one of the spaces Mℓ(C), M
(sy)
ℓ (C), M

(sk)
ℓ (C),

or Mm−r,p−r(C) which is embedded, denoted by i, as the body of the kite. This
provides a normal section to the stratum Σℓ of matrices of corank ℓ through A. We

refer to this affine subspace as a restricted kit space. We let D(∗ ′)
∗ denote the variety

of singular matrices in M ′. Then, in a sufficiently small tubular neighborhood T of

Σℓ we obtain D(∗)
∗ ∩ T is diffeomorphic to Σℓ × (D(∗ ′)

∗ ∩ Bε) for sufficiently small

ε > 0. We refer to L(D(∗ ′)
∗ ) as the local link of the stratum Σℓ.

Then i induces an inclusion i : D(∗ ′)
∗ ∩Bε ⊂ D(∗)

∗ . There is the induced a map i∗

on cohomology which sends the exterior algebra giving the cohomology of M\D(∗)
∗

to the algebra (10.5). This is a consequence of the proofs of Theorems 9.1 and
10.5. Using this we have consistent monomial bases for the cohomology of the
complement. This allows us to define consistent Kronecker pairings giving a well
defined relative Gysin homomorphism. There is the following relation between the

cohomology of the local link L(D(∗ ′)
∗ ) and the link L(D(∗)

∗ ).

Corollary 11.1. The relative Gysin homomorphism

i∗ : H∗(L(D(∗ ′)
∗ );k)→ H∗+q(L(D(∗)

∗ );k)

increases degree by q = dim RM−dim RM
′, which in the various cases equals for the

m×m cases: 2(m2− ℓ2) for the general matrices; (m− ℓ)(m+ ℓ+1) for symmetric
matrices, (m− ℓ)(m+ ℓ−1) for skew-symmetric matrices (with m and ℓ even); and
for m× p matrices 2(p2 − ℓ2).

It is injective and sends the Alexander dual of the Kronecker dual of each mono-
mial in the algebra (10.5) to the corresponding Alexander dual the Kronecker dual
of the same monomial but considered as an element of the cohomology of the com-

plement M\D(∗)
∗ .

Proof. By the above remarks, there is defined the relative Gysin homomorphism. If
i denotes the inclusion of the reduced kite space into the space of matrices, then the
induced map on cohomology of the complements, denoted i∗, (with coefficients k
a field of characteristic 0) is surjective. We use the identification of the monomials
em with the Kronecker duals denoted e∗

m
. Then, the inclusion i∗ is the dual of i∗.

Thus, the dual homomorphism for homology i∗ is injective. When this is composed
with Alexander isomorphisms (via the Kronecker pairings), it remains injective.
By the properties of the corresponding cohomology classes of the links resulting
from applying Alexander duality have the effect of raising degree by the difference
dim RM −dim RM

′ for each of the four types. These are then computed to give the
stated degree shifts. �
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We also mention that there is an analogous version of this corollary for the case
of the local link for a stratum Σℓ′ included in the local link of a stratum Σℓ for
ℓ′ < ℓ. As an example we consider

Example 11.2. For the stratum Σ2 ⊂ Sym5(C), the local link has reduced coho-

mology Λ̃ ∗ k〈e1, e5〉[4]. However, the effect of Alexander duality on elements does
not correspond to a shift. The reduced cohomology of the complement is spanned
by the generators {e1, e1, e1e5} with Kronecker duals denoted {e1 ∗, e5 ∗, (e1e5)∗}.
Then, the corresponding to the Alexander dual generators denote {ẽ1, ẽ5, ˜e1e5} have
degrees 9, 5, 4 in that order. Also, the link L(D(sy)

5 ) has cohomology Λ̃ ∗ k〈e1, e5, e9〉[13].
Then, as i∗ is surjective, i∗ maps the Kronecker duals {e1 ∗, e5 ∗, (e1e5)∗} to the cor-

responding elements for the complements Sym5(C) D(sy)
5 . Then these elements

correspond to elements {ẽ′1, ẽ′5, ˜(e1e5)′} of degrees 27, 23, 22. We see that the in-
crease in degree is 2(15− 6) = 18.

Hence, one key point is to note that under the form of the cohomology repre-
sented as a subgroup by the truncated and shifted exterior algebras, the relative
Gysin homomorphism does not map the shifted classes to the corresponding shifted
classes.

Remark 11.3. For m×p finitely KM -determined matrix singularities f0 : Cn, 0→
Mm,p(C), 0, if n ≤ |2(m− p+ 2)|, then by transversality, V0 has an isolated singu-
larity and so has a Milnor fiber for any smoothing. As yet there does not appear to
be a mechanism for showing how this Milnor fiber inherits topology fromMm,p(C).
However, for (m, p) = (3, 2), Frühbis-Krüger and Zach [F], [Z], [FZ] have shown
that for the resulting Cohen-Macaulay 3-fold singularities in C5, the Milnor fiber
has Betti number b2 = 1, allowing the formula of Damon-Pike [DP3] to yield an
algebraic formula for b3. It remains to be understood how this extends to larger
(m, p).

12. Module Structure for the Cohomology of Milnor Fibers of

Matrix Singularities

We conclude by considering various contributions to the overall cohomology mod-
ule structure of the Milnor fiber over the characteristic subalgebra.

We first consider two examples at the opposite extremes for matrix singularities

Let V0 = f−1
0 (V) be defined by f0 : Cn, 0 → M, 0 for V = D(∗)

m . We illustrate
how the characteristic subalgebra together with the topology of the “singular Mil-
nor fiber” of f0 contributes to the Milnor fiber cohomology, including the module
structure, of V0.

Example 12.1. There two cases at opposite extremes for matrix singularities

defined by f0 : Cn, 0 → M, 0 which is transverse off 0 to D(∗)
m . Then, either

n < codimM (sing(V)) or f0 is the germ of a submersion. In the first case, when
n < codimM (sing(V)), V0 has an isolated singularity, and the singular Milnor fiber
for f0 is diffeomorphic to the Milnor fiber for V0, so the Milnor number of V and the
singular Milnor number of f0 agree. Also, f

∗
0w(e

′
m
) = 0 for all e′

m
of positive degree;

thus A(∗)(f0, R) = H0(Vw;R) ≃ R. As the Minor fiber is homotopy equivalent to
a CW-complex of real dimension n− 1, the corresponding classes which occur for
the Milnor fiber will have a trivial module structure over A(∗)(f0, R).
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Second, if f0 is the germ of a submersion, then the Milnor fiber has the form
Fw ×Ck, where Fw is the Milnor fiber of V for k = n− dim CM . Thus, the Milnor
fiber of V0 has the same cohomology as Fw. We conclude that f∗

0 : H∗(Vw;R) ≃
H∗(Fw;R), or A(∗)(f0, R) = H∗(Fw ;R). Also, there are no singular vanishing
cycles.

Thus, for these two cases there is the following expression for the cohomology of
the Milnor fiber, where the second summand has trivial module structure shifted
by degree n− 1.

(12.1) H∗(Vw;R) ≃ A(∗)(f0, R)⊕Rµ[n− 1]

where µ = µV(f0) for V = D(∗)
m denotes the singular Milnor number for the corre-

sponding variety V0 of singular matrices.

Question: We ask how must (12.1) be modified for matrix singularities of the three
types?

If R is a field of characteristic 0, then for a general hypersurface singularity we
write (12.1) in a more general form as a direct sum.

(12.2) H∗(Vw;R) ≃ AV(f0, R)⊕WV(f0, R)

We then may ask several questions about the properties of the summandWV(f0, R).

i) Does Rµ[n− 1] for µ = µV(f0) occur as a summand?
ii) Does WV(f0, R) vanish below degree n− 1?
iii) If i) holds, is there an additional contribution in degree n−1 toWV(f0, R)?
iv) If ii) does not hold, canWV(f0, R) be chosen to be anAV(f0, R)-submodule?

One step in establishing i) is in the case that f0 has finite KH -codimension. By the
H-holonomic property, f0 is transverse to V in a neighborhood of 0 ∈ Cn. Then,
there is a stabilization of f0, ft : U → M defined for t ∈ (−γ, γ) for some γ > 0,
so that for 0 < |t| < γ ft is transverse to V . Since H ◦ ft defines a hypersurface, it
satisfies the Thom condition af so for appropriate 0 < η << δ, we can stratify the
mapping

H ◦ ft|Bδ : (H ◦ ft)−1(Bη) ∩Bε → Bη .

Then, the system of tubes for the stratification provide a neighborhood NVt
of

Vt = f−1
t (V)∩Bε and a retraction onto it (see e.g. [M1], [M2], or [GDW]). Given a

Milnor fiber Vw = (H ◦ft)−1(w)∩Bε, let π denote the composition of the inclusion
and the projection Vw ⊂ NVt

→ Vt. There is an induced homomorphism

(12.3) π∗ : H∗(Vw;R) → H∗(f
−1
t (V) ∩Bε;R) .

In the case R is a field of characteristic zero as above, then if π∗ is surjective, the
dual map in cohomology (12.4) is injective.

(12.4) π∗ : H∗(f−1
t (V) ∩Bε;R) → H∗(Vw;R) .

Thus, by a result of Damon-Mond [DM], which also holds in the H–holonomic
case [D1], f−1

t (V) ∩ Bε is homotopy equivalent to a bouquet of µ = µV spheres of
dimension n− 1. Thus, the injectivity of (12.4) gives the factor kµ[n− 1] in (12.1).

This is just a first step in answering the above questions.

Partial Criterion for (12.2): For the occurrence of Rµ[n − 1] as a submodule of
WV(f0, R) in (12.2) for a finitely KHM -determined germ it is sufficient that (12.3)
is surjective.
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Singularity
Type

“Universal Singularity V ” Singularities of type V

Discrimants Discriminants of Stable
Germs

Discriminants of Finitely De-
termined Germs

Bifurcation Sets Bifurcation Sets of G-Versal
Unfoldings

Bifurcation Sets of G-Finitely
Determined Unfoldings

Hyperplane Arrange-
ments

Special Central Hyperplane
Arrangements

Generic Versions of Special
Hyperplane Arrangements

Hypersurface Ar-
rangements

Special Central Hyperplane
Arrangements

Hypersuface Arrangements
of Special Type

Exceptional Orbit
Hypersurfaces

Defined by Linear Algebraic
Group Representations with
Open Orbits

special types of determinan-
tal arrangements:

Quiver Discrimi-
nants

Discriminants for Quiver
Representations of Finite
Type

Discriminants from Map-
pings to Quiver Representa-
tion Spaces

Cholesky-Type Fac-
torizations

Discriminants for Cholesky-
Type Factorizations

Discriminants for Cholesky-
Type Factorizations for Ma-
trix Families.

Matrix Singularities Varieties of Singular m × m
Matrices of Three Types

Matrix Singularities of Three
Types

Table 4. Examples of General Cases of Singularities of Given Types.

For the remaining questions, there are few special cases such as generic central
hyperplane arrangements [OR] and generic hypersurface arrangements [Li] where
the answer to ii) is positive. However, there are significant additional contributions
in degree n− 1 to WV(f0, R) (see §13).

Even for i) and V = D(∗)
m , this leaves the remaining issues to be addressed:

1) giving a sufficient condition that guarantees that (12.3) is surjective.

2) determining µV for V = D(∗)
m . In the case that V0 has an isolated singularity

(which requires that n is small, i.e. n ≤ codim(sing(D(∗)
m )), but allows

arbitrary m), Goryunov-Mond [GM] give a formula in all three cases for
µV in terms of the formula of [DM] for free divisors with a correction term
given by an Euler characteristic for a Tor sequence. Alternatively, by a
different method using “free completions”in all three cases, with arbitrary
n but for small m, Damon-Pike [DP3] give formulas for µV as alternating
sums of lengths of explicit determinantal modules. However, there stlll does
not exist a formula valid for all m and n.

3) determining the form of additional module generators over A(∗)(f0, R) be-
sides those identified in (12.1).

13. Detecting Characteristic Cohomology for the General Case

Matrix singularities provide special examples of the general case of singularities
of type V , a hypersurface which represents a “universal singularity type”. We sum-
marize below the descriptions of several of the main classes of singularities of given
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universal singularity types in Table 4. These were mentioned in the introduction
and all of them have characteristic cohomology for Milnor fibers, complements,
and links. We can ask to what extent the form of the characteristic cohomology
has been identified for each of these cases and when can the nonvanishing part be
determined? We briefly comment on the cases and their relation with the results
here.

Exceptional Orbit Hypersurfaces (yielding special determinantal arrange-
ments): As listed in the tables, the form of the characteristic cohomology has been
explicitly determined by the results in [DP] and [D3] for coefficients over a field of
characteristics 0. This includes the cases of discriminants of quiver representation
spaces of finite type and the discriminants for (modified) Cholesky-type factor-
izations. Singularities of these types are given by special types of “determinantal
arrangements”given in [DP2]. For these cases compact models for Milnor fibers and
complements are given as homogenenous spaces and can be used to define vanishing
compact models in [DP]. Then, the tower structures given in [DP2] can be used to
give analogous versions of kite maps for these cases which can be used for detection
criteria.

For the representation spaces for quiver of finite type given in [BM], there are
also compact models as given in [D3] which can be used to construct vanishing
compact models. Now the restrictions of the root structures in [BM] need to be
employed to define detection maps.

In both cases the details still have to be determined for identifying nonvanishing
parts of the characteristic cohomology.

Central Hyperplane and Hypersurface Arrangements :
For a central hyperplane arrangement V ⊂ CN , it follows from the work of Arnold

[A], Brieskorn [Br], and Orlik-Solomon [OS] (more generally [OT, Chaps. 3, 5]),
there is an explicit description of the cohomology of the complement H∗(CN\V ;C)
generated by 1-forms corresponding to each hyperplane with combinatorially de-
fined relations (in fact, by Brieskorn, this holds for coefficients Z using the Z-
subalgebra on these generators). For a central hyperplane arrangement V0 ⊂ Cn

defined by a linear map f0 : Cn, 0 → CN , 0 transverse to V off 0 ∈ Cn, it then
follows from transversality that the combinatorial conditions up to codimension
n− 1 continue to hold. It follows that H∗(Cn\V0;C) = CV(f0,C). This then allows
us to compute BV(f0,C) by adding relations in degree n − 1 and above; and then
H∗(L(V0);C) = BV(f0,C) can be explicitly computed.

In the case that f0 is nonlinear there is no general result for CV(f0,Z), although
we know the form it has as the image f∗

0 (H
∗(BN

δ \V ;Z)) for sufficiently small δ > 0.
The problem for determining this image involves detecting the nonvanishing of the
terms. One result is obtained by Libgober [Li] for the case where V = BN , the
Boolean arrangement. The singularities V0 are referred to by him as isolated non-
normal crossings (INNC) (these are the same as hypersurface arrangements defined
by a finitely KBN

-determined germ f0 [D1]). Then, CN\BN is homotopy equivalent
to a torus TN so

H∗(CN\BN ;Z) ≃ Λ∗Z < e1, . . . , eN > .

The result of Libgober [Li, Thm 2.2] gives results for the homotopy groups, which
together with the relative Hurewicz Theorem and the universal coefficient theorem,
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implies that CV(f0,Z) contains Λ∗Z < e1, . . . , eN > up through degrees ≤ n − 2,
with no information on dimension n− 1.

However, there does not exist a general result guaranteeing the nonvanishing
of the characteristic cohomology for generic hypersurface arrangements based on a
general central hyperplane arrangement. In the case of complexified arrangements,
the Salvetti complex, see e.g. [OT, §5.2], provides a compact model for the comple-
ment, which then provides a vanishing compact model for the detection method.
Hence, detection maps can be defined by linear sections whose images contain ap-
propriate subspaces of the Salvetti complex. If df0(0) : C

n → CN contains a generic
k-plane section, then f0 plays the role of a kite map; and the detection method will
imply that H∗(CN\BN ;Z) will map isomorphically in degree < k−1 onto its image
in the characteristic cohomology of the complement.

Milnor Fibers of Hyperplane and Hypersurface Arrangements: For the cohomology
of the Milnor fiber of central hyperplane arrangements, there are basically very few
results. For central generic arrangements, the cohomology has been determined
by Orlik-Randell. The Milnor fiber of BN has the homotopy type of a torus of
dimension N − 1 so its cohomology has the form Λ∗Z < e1, . . . , eN−1 >. Orlik
Randell [OR, Thm 2.6] show that this maps isomorphically to H∗(Vw;Z) in degrees

< n−1 and in degree n−1 the Betti number is bn−1 =
(
N−2
n−2

)
+N

(
N−2
n−1

)
. It follows

the characteristic cohomology contains all of Λ∗Z < e1, . . . , eN−1 > up through
degree n− 2.

There is an analogous result for generic hypersurface arrangements, i.e. INNC,
by a result of Libgober [Li, Prop. 4.6] which also implies that the characteristic
cohomology of the Milnor fiber contains all of Λ∗Z < e1, . . . , eN−1 > up through
degree n − 2. However, he does not give an explicit formula for bn−1. Both of
these results use a covering representation of the Milnor fiber to carry out the
computations. This was extended by Cohen-Suciu [CS] to more general hyperplane
arrangements; however, their computation involves complexes of chains for local
systems on the covering representation. This allows them to compute explicitly
the result for certain hyperplane arrangements in dimension ≤ 3, but there are not
general results.

These show that for the generic linear arrangements and hypersurface arrange-
ments the characteristic cohomology for the Milnor fiber occupies all degrees below
n − 1, so for these cases the answer to question ii) (in §12) is positive. We also
ask for the extent of the additional contribution to WV(f0, R) in (12.2). As BN

is a linear free divisor, we can compute µBN
(f0) using the calculations in [D1,

§6]. For the generic hyperplane arrangement case, we have µBN
(f0) =

(
N−1
n

)
.

Also, in degree n − 1, the characteristic cohomology can contribute a subspace of
dimension

(
N−1
n−1

)
. Then, bn−1 can be reexpressed in terms of these two dimen-

sions by: bn−1 =
(
N−1
n−1

)
+ n

(
N−1
n

)
. It follows that if the characteristic cohomology

contributes the full amount in degree n-1, then there is still an additional contri-
bution to WV(f0, R), beyond tthat from the singular Milnor fiber, of dimension

(n − 1)
(
N−1
n

)
. This says that each singular vanishing cycle contributes n vanish-

ing cycles to the Milnor fiber. This raises the question of how exactly this extra
cohomology is realized geometrically.

For a generic hypersurface arrangement V0, 0 defined by a nonlinear map germ
f0 transverse to BN , 0 off 0 ∈ Cn, there are less precise results, even though we
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know the form of CV(f0,C) and BV(f0,C) by the above. To detect nonvanishing
contributions to the characteristic cohomology for the Milnor fiber using the method
given here, requires vanishing compact models for the Milnor fiber which we do not
have.

We are able to give one type of example where we can explicitly see what occurs
in dimension n− 1.

Example 13.1. We consider an isolated curve singularity V0, 0 ⊂ C2, 0 defined
by f = f1 · f2 · · · fk with each fj defining an isolated curve singularity Vi, so
V0 = ∪ki=1Vi. We can alternately consider V0 as a generic hypersurface arrangement
defined by F = (f1, . . . , fk) : C

2, 0→ Ck, 0 for the Boolean arrangement Bk ⊂ Ck.
We note that C2 lies below the dimension to which the result of Libgober applies.

We can stabilize F to Ft = (f1 t, . . . , fk t) : U → Ck so in particular each Vj t =
f−1
j t (0) ∩ Bε is a Milnor fiber for fj and the Vj t pairwise intersect transversely.

Then, V0 t = ∪ki=1Vj t is the singular Milnor fiber for F . It is homotopy equivalent
to a bouquet of µBk

(F ) S1‘s. If I(fi, fj) denotes the intersection number of Vi t
and Vj t. A smooth nearby fiber of f close to V0 t adds one vanishing cycle for each
intersection point. Thus, the Milnor number of f is given by

(13.1) µ(f) = µBk
(F ) +

∑

i<j

I(fi, fj) .

Then, Bk has a Milnor fiber which is homotopy equivalent to a k − 1 torus and
has the torus as a compact model. Thus, the possible contribution to ABk

(F,Z)
in dimension 1 would have rank k − 1. However, for most examples the sum of
intersection numbers considerably exceeds k − 1; thus, WBk

(F,Z) must be consid-
erably larger than the contribution from characteristic cohomology. For example if
f = f1 · f2 · f3 with the fi distinct generic quadrics, then µ(f) = 25, by [D1, §6]
µB3(F ) = 13, and the sum of intersection numbers is 12; while 3 − 1 = 2. Thus,
most of the cohomology in dimension 1 not part of the singular Milnor fiber lies
outside of the characteristic cohomology.

A basic question then is to determine geometrically what part of the charac-
teristic cohomology exists in WBk

(F,Z) and what geometrically accounts for the
remainder

Discriminants and Bifurcation Sets :
There are only very limited results for the topological structure of the comple-

ment for either types. For the stable germs obtained by unfolding simple hypersur-
face singularities, the complement is a K(π, 1) by results of Arnold and Brieskorn.
However, this does not continue to be always true for ICIS by Knörrer. Also, there
is an explicit basis for the cohomology of complements of discriminants of stable
Ak-singularities by results of Fuks and for those of types D, and for types B and C
for functions on manifolds with boundaries, by Goryunov. Hence, only for comple-
ments of discriminants of finitely determined germs of these types do we have the
form for CV(f0,C). Otherwise little is known about the characteristic cohomology
for these singularities.

Also, there are many different equivalence groups G in the holomorphic cate-
gory , allowing additional features to be preserved such as (flags of) distinguished
parameters, equivariant germs, diagrams of mappings, distinguished varieties, and
restrictions to (flags of) subvarieties, etc. These are geometric subgroups of A or
K. Then, unfoldings of finitely G-determined germs are modeled on the G-versal



DETECTING THE CHARACTERISTIC COHOMOLOGY 43

unfoldings. These need not always be hypersurfaces; however, in many important
cases they are. For virtually all of these, the cohomology of the Milnor fiber (in the
hypersurface case) and that of the complement and link is unknown. Hence even
the form of the characteristic cohomology is unknown. Because of such a great va-
riety of possibilities, essentially nothing is known about the topology of bifurcation
sets of unfoldings for any of these groups G.

By contrast, many of the universal singularities have been shown to be (H-
holonomic) free divisors, see e.g. the list in [D1] and the additional work in e.g.
[GM] and [DP2]. Thus, for these we can compute the singular Milnor number
to determine a possible contribution for the Milnor fiber using the results of the
previous section.

Hence, many of the list of questions given for matrix singularities still remain to
be resolved in the other cases mentioned about.
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[JP] Józefiak, T. and Pragacz, P. Ideals generated by Pfaffans, J. Algebra 61 (1979) 189–198.
[KM] Kadzisa, H. and Mimura, M. Cartan Models and Cellular Decompositions of Symmetric

Riemannian Spaces, Top. and its Appl. 156 (2008) 348–364.
[KMs] Kato, M. and Matsumoto, Y. On the Connectivity of the Milnor Fiber of a Holomorphic

Function at a Critical Point, Manifolds-Tokyo 1973 (Proc. Int’l. Conf., Tokyo, 1973),
Univ. Tokyo Press (1975) 131–136.
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