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Abstract

We consider the average outward flux through a Jordan
curve of the gradient vector field of the Euclidean distance
function to the boundary of a 2D shape. Using an alternate
form of the divergence theorem, we show that in the limit as
the area of the region enclosed by such a curve shrinks to
zero, this measure has very different behaviours at medial
points than at non-medial ones, providing a theoretical jus-
tification for its use in the Hamilton-Jacobi skeletonization
algorithm of [7]. We then specialize to the case of shrinking
circular neighborhoods and show that the average outward
flux measure also reveals the object angle at skeletal points.
Hence, formulae for obtaining the boundary curves, their
curvatures, and other geometric quantities of interest, can
be written in terms of the average outward flux limit values
at skeletal points. Thus this measure can be viewed as a
Euclidean invariant for shape description: it can be used to
both detect the skeleton from the Euclidean distance func-
tion, as well as to explicitly reconstruct the boundary from
it. We illustrate our results with several numerical simula-
tions.

1. Introduction

In recent years there has been a resurgence of interest in
representations based on the Blum skeleton, and extensions
to 3D, for shape representation and analysis have been de-
veloped [9, 5, 8]. A number of abstractions related to the
skeleton have been proposed, and algorithms for a diverse
range of computer vision and medical imaging applications
have been developed. These include shape segmentation,
shape matching, view-based object recognition and index-
ing. Although the possibility of using the Blum skeleton in
such domains has long been considered, only recently have
robust and efficient algorithms for computing such repre-
sentations been developed. This paper focuses on one class
of such algorithms, those which utilize the average outward
flux of the gradient vector field of the signed Euclidean dis-

tance function [7, 3, 6].
This paper makes several contributions. First, an alter-

nate form of the divergence theorem is introduced in order
to investigate the behaviour of the gradient vector field of
the Euclidean distance function at medial points, where it is
discontinuous. Second, we show that the limiting behaviour
of the average outward flux of this vector field through a Jor-
dan curve as the area it encloses shrinks to zero, is very dif-
ferent at medial points than at non-medial ones, providing
a strong theoretical justification for its use in the Hamilton-
Jacobi skeletonization algorithm [7]. Third, we specialize to
the case of shrinking circular neighborhoods and show that
the average outward flux measure also reveals the object an-
gle at each of the three types of skeletal points: 1) regular
points, 2) branch points and 3) end- points. Hence, for-
mulae for obtaining the boundary curves, their curvatures,
and other geometric quantities of interest, can be written
in terms of the average outward flux limit values at skele-
tal points. We illustrate our results with several numerical
simulations.

2. Flux and Divergence

2.1. Preliminaries

We shall consider a shape to be any path connected space
X in the plane, for which the boundary ∂X is given by C3

curves. For each point P ∈ R
2 in the plane we define a

distance function D : R
2 → R

D(P ) = inf
Q∈∂X

d(P,Q)

where d(P,Q) is the Euclidean distance between P and Q.
Given our assumptions on X , D is a continuously differen-
tiable function everywhere except on the skeleton.

Now, for each point P ∈ R
2, define the set PC =

{(x, y) ∈ ∂X | D(x, y) = D(P )}. Thus, PC contains all
points on the boundary that are closest to P . The skeleton
of a shape X , denoted S(X), is the set of points for which
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there are two or more closest boundary points

S(X) = {P ∈ X | |PC | ≥ 2} .

Technically, this excludes end-points of the skeleton since
an end-point coincides with the center of curvature of a
boundary point Q ∈ ∂X that is a local maximum of pos-
itive curvature.

The distance function gradient vector field q̇ = ∇D,
is continuous and has magnitude one, except at skeletal
points where it is not continuous. Hence, with the excep-
tion of skeletal points, ∇D can be parametrized by its ori-
entation at each point in the plane. With θ(x, y) : R

2 →
[0, 2π] being the orientation of the gradient vector at (x, y)
and R(θ) being the rotation matrix with argument θ, we
have ∇D(x, y) = R(θ(x, y))e1, where e1 = (1, 0), and
∇D(x, y) · v = cos(α− θ(x, y)), where v is any unit vec-
tor with orientation α.

We now define the outward flux and the average outward
flux of the gradient vector field q̇ through a Jordan curve.
Let N be the outward normal at each point on the boundary
∂R of such a curve, and ds be an arc-length element.

Definition 1 The outward flux of q̇ through ∂R is given by
∫

∂R

〈 q̇,N 〉 ds.

Definition 2 The average outward flux of q̇ through ∂R is
given by

∫

∂R
〈 q̇,N 〉 ds.
∫

∂R
ds.

2.2. An Extension of the Divergence Theorem

If q̇ is differentiable over a region R with boundary ∂R,
the standard form of the divergence theorem states that

∫

R

div(q̇) dv ≡

∫

∂R

〈 q̇,N 〉 ds. (1)

Here dv is an area element. In other words, the integral
of the divergence of the vector field over a region is given
by the outward flux of the vector field through that region’s
bounding contour. We shall now develop an extension of
the divergence theorem which can be applied to investigate
properties of the vector field q̇ = ∇D at skeletal points,
where it is discontinuous. Figure 1 illustrates the set up for
the calculation which follows.

Let S be a branch of the skeleton and let R = R1 ∪ R2

be a path connected region which intersects it. Let ∂R =
C1 ∪ C2 and C3 = S ∩ R. Let C

′

3t, C
′′

3t be parallel curves
to C3 which approach C3 as t → 0. Let R1t and R2t be the
regions obtained from R1 and R2 by removing the region
between the curves C

′

3t and C
′′

3t Finally, let q̇+ denote q̇

above S and q̇− denote q̇ below S.

S

C

C

C
3

1

2

C’
3t

C’’
3t

R

R

1

2

Figure 1. A region R which intersects a branch of the skele-
ton S.

The outward flux of q̇ through ∂R is given by
∫

∂R

〈 q̇,N 〉 ds =

∫

C1

〈 q̇,N 〉 ds +

∫

C2

〈 q̇,N 〉 ds.

Applying the divergence theorem to R1t and R2t

∫

R1t

div(q̇) dv =

∫

C1t

〈 q̇,N 〉 ds +

∫

C
′

3t

〈 q̇,N 〉 ds,

∫

R2t

div(q̇) dv =

∫

C2t

〈 q̇,N 〉 ds +

∫

−C
′′

3t

〈 q̇,N 〉 ds.

Adding the above two equations we have
∫

R1t

div(q̇) dv +

∫

R2t

div(q̇) dv =

∫

C1t

〈 q̇,N 〉 ds +

∫

C2t

〈 q̇,N 〉 ds +

∫

C
′

3t

〈 q̇,N 〉 ds +

∫

−C
′′

3t

〈 q̇,N 〉 ds.

It is a standard property that the tangent to the skeleton bi-
sects the the angle between q̇+ and q̇− at a skeletal point
(see Figure 2). Thus, on C3 we have

〈 q̇+,N+ 〉 = 〈 q̇−,N− 〉 , (2)

where N+,N− denote the normals to C3 from above and
from below, respectively. Thus, one can take the limit as
t → 0 of both sides of the above equation to obtain the
following extension of the divergence theorem

Theorem 1 For a path connected region R which contains
part of a skeletal curve S, the divergence of the vector field
q̇ is related to its flux through ∂R by the following equation

∫

R=R1∪R2

div(q̇) dv =

∫

∂R

〈 q̇,N 〉 ds + 2

∫

C3

〈 q̇,NC3
〉 ds.
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Although the divergence theorem fails for such regions be-
cause q̇ is discontinuous on C3, the last integral is well de-
fined due to Eq. 2; we either take q̇ = q̇+ and NC3

= N+

or q̇ = q̇− and NC3
= N−. Because 〈 q̇,NC3

〉 is in the
interval (0, 1] on the skeleton, it also follows that
∫

∂R

〈 q̇,N 〉 ds ≥

∫

R

div(q̇) dv − 2× length(C3).

2.3. Intrinsic Meaning of the Outward Flux

It is a standard fact that the quantity
∫

R
div(q̇) dv, and

hence the outward flux of q̇ through ∂R, measures the de-
gree to which the flow produced by the vector field q̇ is
area preserving in 2D (or volume preserving in 3D). This
can be seen by applying the transport theorem [1] (p. 10)
to the area enclosed by ∂R. This quantity is highly non-
intrinsic in that it is strongly dependent on ∂R, and is zero
only for very special cases, those where the vector field q̇

is locally parallel. Thus, calculations such as those reported
in [10], where the outward flux measure introduced in [6]
is related to a notion of Blum’s ligature, do not hold in the
general case. This also raises the question of how such a
measure could be used to distinguish skeletal points from
non-skeletal ones, as suggested in [6, 3]. The answer, as we
will now see, is to consider the limiting behavior of the aver-
age outward flux of q̇ = ∇D, as the region enclosed shrinks
to zero. This measure is at the heart of the Hamilton-Jacobi
skeletonization algorithm in [7].

2.4. Limiting Behaviour

We now consider the limit values of the outward flux
and the average outward flux, of the vector field q̇ = ∇D
through a convex curve that is the boundary ∂R of a region
R, as the region shrinks to a point. The results reported here
are actually a special case of a more general result which
applies to the case of any shrinking convex domain, and
which extends to higher dimensions [2].

We begin by considering the case where the limit point
P does not lie on the skeleton and hence Eq. (1) applies.
We can write

∫

R

div(q̇) dv ≡

∫ L

0

〈 q̇P + δ(s),N 〉 ds

where L is the Euclidean length of ∂R, q̇P is the value of
the vector field at the limit point P and δ(s) is the quantity
added to get the value of q̇ at neighboring points on ∂R (q̇
is continuous at P ). In the limit as L → 0 we have

limL→0

(

∫ L

0

〈 q̇P,N 〉 ds +

∫ L

0

〈 δ(s),N 〉 ds

)

.

It is easy to see that the second integral goes to zero due to
the fact that δ(s) goes to zero. The first integral also goes to

zero due to the fact that ∂R is a closed curve. Thus, the limit
value obtained for the outward flux value at a non-skeletal
point is zero. By essentially the same argument, the limit
value obtained for the average outward flux value at such a
point is also zero.

We now consider the second case where the limit point
is a skeletal point and hence Theorem 1 applies, which we
rewrite as
∫

∂R

〈 q̇,N 〉 ds =

∫

R

div(q̇) dv − 2

∫

C3

〈 q̇,NC3
〉 ds.

By the same argument presented for the first case above, the
first integral on the right hand side goes to zero in the limit
as R → 0. The second integral on the right hand side can
be written as

−2

∫

C3

〈 q̇P + δ(s),NC3
〉 ds

where P is the limit point and δ(s) is the quantity added to
get the value of q̇ at neighboring points on C3. Owing to
the fact that the integrand is in (0, 1] (a special property of
skeletal points), the value of this second integral is bounded
above by −2× (infC3

〈 q̇C3
,NC3

〉)× length(C3) and be-
low by −2 × length(C3). Thus we deduce that the limit
value of the outward flux at a skeletal point is also zero, due
to the multiplicative length term. On the other hand, when
the average outward flux is considered (see Definition 2),
the limit value reached as the region shrinks to a skeletal
point P is −2 〈 q̇P,NP 〉.

Summarizing the above results, we have the property that
whereas the limit value of the outward flux is zero for both
skeletal and non-skeletal points, the average outward flux
has a different limiting behaviours at skeletal points than at
non-skeletal ones, providing a theoretical justification for its
use in the Hamilton-Jacobi skeletonization algorithm [7].

3. Circular Neighborhoods

We now specialize the average outward flux calculation
to the case of circular neighborhoods shrinking to a skeletal
point. We shall treat the three cases of regular points, branch
points and end-points of the skeleton separately.

3.1. Regular Skeletal Points

A regular skeletal point P is one for which PC =
{Q1, Q2} for Q1 6= Q2. Let n1 and n2 be the unit inward
normals to the boundary at Q1 and Q2 respectively. Let tP

be the unit tangent vector to the skeleton at P and define the
object angle at P to be α(P ) ∈ [0, π/2], such that

n1 · n2 = cos 2α(P ).

It follows that ni · tP = cosα(P ) for i = 1, 2 (see Figure
2).
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αP

α

S(t)

tP

Q2

Q1

Figure 2. The object angle α = α(P ) at a simple skeletal
point P . Here S(t) is a parameterization of the skeleton
curve. Hence, tP = S

′(t0) is the tangent at t0, i.e. where
P = S(t0).

α
α S(t)P0P1 P

CP

ε

Figure 3. The distance function gradient vector field in the
ε-neighborhood of P is given by a step function – one value
for the “top” semi-circle and another for the “bottom” one.
Both these vectors form an angle of α = α(P ) with tP ,
since the skeleton is assumed to cut C

P
ε in half at P0 and

P1.

Now, let CP
ε be the circle with radius ε centered at P .

Let CP
ε : [0, 2π] → R

2 be given by

CP
ε (s) = ε(cos(s + θ(tP ), sin(s + θ(tP )) + P, (3)

where CP
ε (0) = P + εtP and CP

ε (π) = P − εtP . Now
consider Figure 3. Here, it is assumed that the gradient field
has one value along CP

ε (s) for s ∈ (0, π) and another for
s ∈ (π, 2π). Also, both CP

ε (0) = P0 and CP
ε (π) = P1 are

on the skeleton. Let the outward normal of this circle at s
be N (s). Hence, the outward flux of ∇D though CP

ε (s) is

Fε(P ) =

∫ 2πε

0

〈

∇D(CP
ε (s)),N (s)

〉

ds

= −ε

∫ π

0

cos(α− s) ds− ε

∫ 2π

π

cos(−α− s) ds

= −4ε sin(α)

Notice that this calculation holds regardless of the orienta-
tion of tP . However, it makes very strict assumptions that
do not hold in most situations. Fortunately, the general case
is similar to this one.

There are only two differences: (1) CP
ε (0) and CP

ε (π)
may not be on the skeleton, and (2) the distance func-
tion gradient field may take on more than two values along
CP

ε (s) for s ∈ [0, 2π]. For small enough ε, the circle will
intersect the skeleton at precisely two points, which we la-
bel P0 = CP

ε (δ0) and P1 = CP
ε (π + δ1). Thus, the dis-

tance function gradient field is continuous on CP
ε (s) for

s ∈ I0 = (δ0, π+δ1) and also for s ∈ I1 = (π+δ1, 2π−δ0)
1. However, it may take on more than one value in the in-
tervals I0 and I1. Define β0(s) and β1(s) on I0 and I1

respectively, to account for such eventualities:

tP · θ(CP
ε (s)) = cos (α(P ) + β0(s)) , s ∈ I0

tP · θ(CP
ε (s)) = cos (−α(P ) + β1(s)), s ∈ I1.

Therefore, the outward flux calculation for regular skele-
tal points becomes

Fε(P ) =

∫ 2πε

0

〈

∇D(CP
ε (s)),N (s)

〉

ds

= −ε

∫ π+δ1

δ0

cos(α + β0(s)− s) ds

−ε

∫ 2π−δ0

π+δ1

cos(−α + β1(s)− s) ds.

The continuity of the distance function gradient field
along the circle implies that both β0(s) and β1(s) are con-
tinuous functions. Further, as ε → 0, necessarily

lim
ε→0

sup
s∈[δ0,π+δ1]

|β0(s)| = 0

lim
ε→0

sup
s∈[π+δ1,2π−δ0]

|β1(s)| = 0.

Also, since the skeletal curve has continuous tangents, we
must have that lim

ε→0
δi = 0 for i = 0, 1. Therefore the av-

erage outward flux through a shrinking circular region is
given by

lim
ε→0

Fε(P )

2πε
= −

2

π
sinα.

3.2. Skeletal End-Points

Let P be a skeletal end-point. Let the point Qε be on
the branch which is at distance ε from P . Choose ε small
enough so that Qε is a regular skeletal point. Thus, the ob-
ject angle is well defined for Qε. Now, let

αP = lim
ε→0

α(Qε).

This limit makes sense, because the circle2 CP
ε intersects

the skeleton at a single point. Also, the object angle varies
continuously along a skeletal branch.

1However, it is not necessarily continuous on the closure of I0 ∪ I1.
2Here CP

ε is as defined in Eq. (3) but tP = limε→0 tQε
.
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2αP
P

ε
S(t)

CP

ε

Figure 4. A circular neighborhood of radius ε around the
end-point P . Along the arc of angle 2αP the gradient vec-
tors agree (in orientation) with the normals to C

P
ε . Along

the arc “above” S(t) the gradient vectors all form an angle
of αP with S

′(0) = tP . Similarly, for the arc “below,” this
angle is −αP .

Now consider Figure 4. Along the arc arcαP
opposite

to the skeleton curve, the distance function gradient field
must coincide with the inner normals of the circle. This is
because the end-point results from the collapse of a circu-
lar arc (possibly a point if αP = 0) on the boundary. On
the rest of the circle, the distance function gradient field be-
haves as if P were a regular skeletal point. Thus,

Fε(P ) = − ε

∫ αP

−αP

ds

− ε

∫ π+δ

αP ε

cos(αP + β0(s)− s) ds

− ε

∫ 2π−αP

π+δ

cos(−αP + β1(s)− s) ds

where δ and βi(s) account for the circle not intersecting the
skeleton midway and the distance function gradient field not
being strictly a step function on CP

ε − arcαP
. Therefore,

lim
ε→0

Fε(P )

2πε
= − 1

π
(αP + sin αP )

since, as ε → 0, δ, β0(s) and β1(s) vanish. Notice, how-
ever, that αP = 0 if the end-point is generated from a con-
tour segment where the curvature is continuous.

3.3. Skeletal Junction Points

Let P be a skeletal junction point; that is where n skele-
tal curves meet. Let these curves be given by parameteriza-
tions Si(t) so that Si(0) = P . Consider a circle of radius ε
centered at P . Denote it CP

ε . For small enough ε, CP
ε in-

tersects the skeleton at precisely n regular points. Refer to
them as Qi

ε = Si(ε). Hence, to each there is a correspond-
ing object angle. Define αi as

αi = lim
ε→0

αQi
ε
.

S1(t)

α1

α1
α2

α3

α3

S
2
(t

)

CP

ε

α2
S

3 (t)

Figure 5. A circular neighborhood of radius ε around the
junction point P . There are three skeletal curves denoted
by S1(t), S2(t) and S3(t) respectively. The dashed lines
link P and its closest points on the boundary (i.e. points in
PC ). Note that α1 + α2 + α3 = π.

Now consider Figure 5. It suggests that
∑

i 2αi = 2π.
Indeed, αi is the angle between S′i(0)

3 and the line join-
ing P to some point in PC . To compute the outward flux
through CP

ε , we can divide the circle into n arcs, each cor-
responding to a skeletal curve. In particular, for Si(t) this
would be the arc of angle 2αi. For example, in Figure 5,
the arc corresponding to S1(t) is the union of the two arcs
of angle α1. Notice that the distance function gradient field
along that arc behaves like that of a regular skeletal point
with object angle αi. Hence, the outward flux through it is

Fε(arci) = − ε

∫ αi

δi

cos(αi + β0,i(s)− s) ds

− ε

∫ δi

−αi

cos(−αi + β1,i(s)− s) ds

where δi, β0,i(s) and β0,i(s) all vanish as ε → 0. Thus,
the total outward flux is Fε(P ) =

∑n

i=1 Fε(arci) and the
average outward flux becomes

lim
ε→0

Fε(P )

2πε
= −

1

π

n
∑

i=1

sinαi.

3.4. Non-Skeletal Points

Now, let P be a non-skeletal point. In particular, there
exists an ε small enough, so that CP

ε contains no skeletal
points. Hence, the distance function gradient field along the
circle is continuous. Thus, we can write

Fε(P ) = ε

∫ 2π

0

cos(α + β(s)− s) ds,

3Here S′i(0) = limt→0+
S′i(t).
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POINT TYPE lim
ε→0

Fε(P )

2πε

Regular Points (Figure 2) − 2
π

sinα

End-Points (Figure 4) − 1
π
(sin α− α)

Junction Points (Figure 5) − 1
π

∑n

i=1 sin αi

Non-Skeletal Points 0

Table 1. A summary of results relating the limit values of
the average outward flux to the object angle for shrinking
circular neighborhoods. Note that for contours of type C

3,
α will be zero for the case of end-points.

where limε→0 sups∈[0,2π] |β(s)| = 0. Hence,

lim
ε→0

Fε(P )

2πε
=

1

2π

∫ 2π

0

cos(α− s) ds = 0.

3.5. Boundary Reconstruction

These results also suggest a method for parameterizing
the boundary curves given a parameterization of the skele-
tal curves. Let S(t) be an arc-length parameterization of a
skeletal curve and denote by α(t) and r(t) the object angle
at S(t) and distance to boundary, respectively (see Figure 2;
if S(t) = P then r(t) = d(P,Q1) = d(P,Q2)). Note that
the object angle can in turn be written in terms of the av-
erage outward flux limit values, as summarized in Table 1.
Assume that r(t) is monotonically decreasing, i.e., segment
the skeletal curve if necessary, The two boundary curves
that created this skeleton curve are given by

C1,2(t) = S(t) + r(t)R(±α(t))S′(t), (4)

where S′(t) is the tangent to the skeleton at S(t) and R(α)
denotes the rotation of S′(t) by α.

4. Experimental Results

We have performed a several numerical simulations to
corroborate findings as well as to demonstrate the appli-
cability of our results. Figure 6 presents an overview of
the steps involved in the experiments. We begin with a bi-
nary image and trace its discrete boundary to get an ordered

list of pixels connected with line segments. Thus, a closed
curve C(t) : R → R

2 is obtained4 (step 1). It is now possi-
ble to define a Euclidean distance function D : R

2 → R on
the whole plane. In this particular setting, D(x, y) can be
computed exactly by considering all line segments and re-
turning the distance to the segment closest to a point (x, y).
Thus, it is also possible to approximate the average outward
flux of ∇D through a circle of radius ε > 0 centered any-
where in R

2. Furthermore, the precision of the computa-
tion depends only on the hardware. Hence, the results sum-
marized in Table 1 can be used to obtain the skeleton of
the curve. The exact method is described in [3]. This al-
gorithm returns a discrete sampling of the skeletal curves
as sequences of points (step 2). Thus, tangents at skeletal
points may be approximated. The radius function is avail-
able through D(x, y), and the object angle α can be ob-
tained from the flux at regular points. This information can
then be used to reconstruct boundary sections correspond-
ing to regular skeletal points (step 3), see Section 3.5.

Figure 7 provides additional examples of the above com-
putation. Figure 8 compares the accuracy of the method to
that of an exact calculation. The profile on the left uses
straight lines to show the association of regular skeletal
points with their bi-tangent points on the contour (the black
circles). Here the association has been determined by using
the average outward flux limit values to obtain the object an-
gle. The profile on the right demonstrates an exact computa-
tion, where the bi-tangent points are obtained by connecting
each regular skeletal point to its two closest contour points.
Notice how similar the two computations are. In fact, the
average outward flux calculation can be performed with ar-
bitrary precision5. It should be pointed out that certain por-
tions of the contour have not been reconstructed because
the end-points of the skeleton have been chosen to satisfy
an object angle threshold (above 30◦). Consequently, the
end-points shown, although very close to the real ones 6,
may not be actual end-points of the skeleton. Thus, to ap-
proximate the missing portions of the contour, it would be
necessary to draw the circular arcs corresponding to the ap-
proximate end-points.

5. Conclusion

We have derived an alternate form of the divergence the-
orem that accounts for singularities in the gradient vector
field of the Euclidean distance function to the boundary of
a shape and have used it to establish a criterion for detect-

4The pixel locations are smoothed to account for jaggedness inherent
in all discrete images.

5Given a sub-sampling of a skeletal curve, it can be improved by nu-
merical methods. One can use the fact that a skeletal point is a maxi-
mum along the gradient line leading to it. Thus, the Nelder-Mead Simplex
method in 1D (see [4]) may be applied to precisely interpolate new points.

6In fact it can be shown that over 90% of the area due to protrusions is
kept, although a detailed analysis is beyond the scope of this paper.
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1 32

Figure 6. (1) From a binary image, the boundary is extracted and represented as a continuous curve. (2) The skeleton is computed.
(3) Using the average outward flux and radius values along the skeleton, the boundary is reconstructed.

Figure 7. For each shape the original is shown in gray, the
skeleton obtained using the average outward flux is shown
with curves and the boundary points estimated from the
skeleton using the relationship between the average outward
flux and the object angle α are shown with black circles.

ing skeletal points. In particular, we have shown that the
average outward flux through a shrinking region containing
a skeletal point tends to a nonzero value, whereas it van-
ishes for non-skeletal points. An analysis assuming shrink-
ing circular regions shows that the average outward flux
also reveals the object angle for the three types of skele-
tal points, allowing for the boundary to be explicitly recon-
structed given a parametrization of the skeleton. Thus the
average outward flux measure can be viewed as a Euclidean
invariant for shape description: it can be used to both detect
the skeleton as well as to explicitly reconstruct the boundary
from it. We have presented several numerical experiments
to corroborate the theory.
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