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Abstract. We consider the Blum medial axis of a region in Rn with piece-
wise smooth boundary and examine its “rigidity properties”, by which we
mean properties preserved under diffeomorphisms of the regions preserving
the medial axis. There are several possible versions of rigidity depending on
what features of the Blum medial axis we wish to retain. We use a form of the
cross ratio from projective geometry to show that in the case of four smooth
sheets of the medial axis meeting along a branching submanifold, the cross
ratio defines a function on the branching sheet which must be preserved under
any diffeomorphism of the medial axis with another. Second, we show in the
generic case, along a Y -branching submanifold that there are three cross ratios
involving the three limiting tangent planes of the three smooth sheets and each
of the hyperplanes defined by one of the radial lines and the tangent space to
the Y -branching submanifold at the point, which again must be preserved.
Moreover, the triple of cross ratios then locally uniquely determines the angles
between the smooth sheets. Third, we observe that for a diffeomorphism of
the region preserving the Blum medial axis and the infinitesimal directions of
the radial lines, the second derivative of the diffeomorphism at points of the
medial axis must satisfy a condition relating the radial shape operators and
hence the differential geometry of the boundaries at corresponding boundary
points.

Preliminary Version

Introduction

We consider the Blum medial axes of regions Ωi ⊂ Rn with piecewise smooth
boundaries Bi and examine their rigidity properties (which will be preserved under
diffeomorphisms of the regions preserving the medial axes). The Blum medial axis
was introduced in [BN] and its properties for generic regions with smooth bound-
aries were obtained in [Yo] and [M], also see [GK] (and more generally for regions
with piecewise smooth boundaries in [DG, Part 1] and [DG2]). Their extensive uses
for imaging questions are covered in the book [PS].

For distinct diffeomorphic regions with homeomorphic medial axes, a basic ques-
tion is whether there are diffeomorphisms between the regions which preserve var-
ious properties of the medial axis structures. This raises the prospect that there
are rigidity properties that must be preserved under a diffeomorphism. There are
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several possible versions of rigidity depending on which features of the Blum me-
dial axis we wish to retain. We list several of these in §1 and ask when there are
diffeomorphisms preserving the geometric properties.

For example, the 2D regions in Figure 1 appear to be smoothly similar enough
that there is a smooth diffeomorphism between them which preserves the medial
axes of the regions. Unfortunately, this is not the case in general due to the presence
of a cross ratio of the tangent lines to the four branches at the central point.
In this note we examine how rigid mathematical invariants based on the cross
ratios associated to various geometric features serve as obstructions to obtaining
diffeomorphisms with the additional properties. In §1 we list several increasingly
restrictive conditions on the medial structure which a diffeomorphism might be
asked to preserve. This raises the question in what ways methods such as those
developed by Yushkevich et. al. in [Y], which do obtain diffeomorphisms of regions
satisfying 1) in the list, must only provide an approximation to satisfying 2), 3), or
4) in the list?

Figure 1. Regions Ωi with Blum medial axes Mi which are
homeomorphic as pairs(Ωi,Mi). In addition, the regions Ωi are
diffeomorphic by a diffeomorphism of the boundaries which sends
the boundary points corresponding to the four A3 points (where
the maxima of curvature of the boundary curves occur) and the
four A4

1 points on each boundary curve (corresponding to the cen-
tral points) to the others. A basic question is whether there is a
diffeomorphism satisfying 1) and 2) in the list in §1 but which also
maps M1 to M2?

We consider arbitrary dimensions n ≥ 2 and use a form of the cross ratio from
projective geometry applied to hypersurfaces to show that in the case of four smooth
sheets of the medial axis meeting along a branching submanifold, the cross ratio
defines a function on the branching submanifold which must be preserved under any
diffeomorphism of the medial axis with another. Second, in the generic case, along
a Y -branching submanifold there are three cross ratios involving the three limiting
tangent spaces of the three smooth sheets together with a hyperplane spanned
by one of the radial lines together with the tangent space to the Y -branching
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submanifold at the point. If the diffeomorphism infinitesimally preserves the radial
lines, then we show these three cross ratios must again be preserved. Moreover, we
show that the ordered triple of cross ratios uniquely locally determine the ordered
triple of angles between the branching smooth sheets.

Third, we observe as a result of [D1, §3 and §5] that for a diffeomorphism of
the region preserving the Blum medial axis and the infinitesimal directions of the
radial lines, the second derivative of the diffeomorphism at points of the medial axis
must satisfy an algebraic condition relating the radial shape operators, and hence
the differential geometry of the boundaries at corresponding boundary points.

As a consequence of these results, if we wish to preserve medial structures under
diffeomorphisms of regions, then in general the structures must be allowed to belong
to the more general class of “skeletal structures”(see [D] or [D2]). Even for these, it
will further follow that it may be only possible to have stratawise (for the skeletal
sets) diffeomorphisms of the regions.

Although we develop the results for general Rn, we specifically indicate the form
they take for imaging questions for the special cases of regions in R2 and R3.

1. Types of Rigidity Questions for the Blum medial Axis

We consider the Blum medial axis of regions Ωi ⊂ R
n with piecewise smooth

boundaries Bi and examine their rigidity properties. There are several possible
versions of rigidity depending on what features of the Blum medial axis we wish to
retain. We let Ωi have Blum medial axis Mi with associated multi-valued radial
vector field Ui on Mi from points x ∈ Mi to the corresponding points ψ(x) =
x + Ui(x) on the boundary Bi. Suppose that the pairs (Ωi,Mi), i = 1, 2 are at
least homeomorphic, and that there is a diffeomorphism ϕ : Ω1 ≃ Ω2. We may ask
several questions about whether we can modify ϕ to preserve features of the Mi.

These might include:
Properties Involving Types of Rigidity :

1) in addition, ϕ maps the points on the boundary yj ∈ B1 corresponding to
the point xj ∈ M1 to the points ϕ(yj) ∈ B2 corresponding to the point
ϕ(xj) ∈M2; or

2) in addition to 1) that ϕ restricts to a diffeomorphism ϕ :M1 ≃M2; or
3) in addition to 1) and 2), that dϕ(xj)(U1(xj)) = U2(ϕ(xj)) for xj ∈M1 and

all values of U1(xj); or
3′) in addition to 1) and 2), that dϕ(xj) at least preserves radial lines, i.e.

dϕ(xj)(〈U1(xj)〉) = 〈U2(ϕ(xj))〉 for xj ∈M1 and all values of U1(xj); or
4) if ϕ satisfies both 1) and 2), how closely can ϕ satisfy 3) or at least 3′) as

well?

While condition 3) would be desirable for a diffeomorphism preserving the full
Blum medial structure, we shall see that already satisfying 3′) places significant
restrictions on diffeomorphisms.

We consider these properties in both the generic and non-generic cases (where
in the later we assume the Blum medial axis still satisfies the conditions for being a
skeletal structure as in [D]). These will also apply to regions with piecewise smooth
boundaries as e.g. in [DG, Part I] or [DG2]. We will be principally concerned with
how the medial structure at branching points restricts the existence of diffeomor-
phisms preserving the medial structure given by the above conditions. We do not
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attempt at this time to determine further specialized conditions for edge points, or
in R3 for fin points, or 6-junction points.

For example, in Fig. 1 are simple regions with nongeneric medial axis structures
which apparently should have diffeomorphic deformations between them. However,
in fact, the two competing conditions of preserving the medial axis and being a
diffeomorphism on the entire interior region are completely incompatible. We will
see that no such diffeomorphism is possible. In Fig. 2 we illustrate a generic
medial axis structure at a branch point in R2. The inclusion of the radial vectors
at the branch point provides sufficient additional data so that again we identify
obstructions to the existence of diffeomorphisms satisfying condition 3′). We also
explain how the results extend to higher dimensions.

For diffeomorphisms of regions preserving the medial axes structures as in 3)
we also explain a further obstruction involving a second order condition on the
diffeomorphism at points of the medial axis which relates a specific second derivative
to the radial shape operators for each of the medial axes. It gives a specific algebraic
relation involving the radial shape operators and a radial distortion operator defined
from the second derivative of the diffeomorphism. This was derived in [D1, Thm
5.4], and it is also briefly discussed in the author‘s chapter [PS, §3.3.3]).

2. Infinitesimal Properties of the Blum Medial Axis at Branch

Points

Before considering differentiable invariants of the Blum medial axis at branch
points, we first obtain several simple relations between the angles of the tangent
spaces and the radial vectors.

We consider a point x on an A3
1 stratum of a generic Blum medial axis. This is a

branch point in the 2D case and a point on a Y -branch curve for the 3D case. We
first consider the case of a region Ω ⊂ R2. The corresponding results for general
Rn follows by using angles between the limiting hyperplanes tangent to the three
smooth sheets at the branch point. For the three branches there are unique limiting
tangent lines Li, i = 1, . . . , 3, forming successive angles θi between the successive
lines, given on the counterclockwise direction, as illustrated in Fig. 2. We also
consider the radial vectors Ui from x to points on the boundary and in the region
corresponding to the angle θi. Third, we let αj denote the angle from the line Li

to the next radial vector Ui going counterclockwise toward the line Lj. Then, there
is the following relation between the angles.

Lemma 2.1. At a generic Y branching point, the angles as above satisfy the rela-
tions αi = π − θi, i = 1, . . . , 3.

Proof. We use the property of the Blum medial axis that the angles from the tangent
line Li to the radial vectors on each side of Li are equal, to obtain the equations

θ1 = α2 + α3

θ2 = α3 + α1

θ3 = α1 + α2(2.1)

Using θ1+θ2+θ3 = 2π, we easily verify that these have unique solutions αi = π−θi,
i = 1, . . . , 3. �

Second, suppose that there are four branch curves with tangent lines Li, i =
1, . . . , 4 in counterclockwise order as in Fig. 3, with the radial vectors Ui ordered
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Figure 2. The configuration of tangent lines, radial vectors and
angles at a generic branch point of the Blum medial axis of a region
in R2.

as above, and the angles βi are from Li to the next radial vector Ui in the counter-
clockwise direction.

Lemma 2.2. At a generic Y branching point with four branch curves, the angles
as above satisfy the following relations:

(2.2) θ1 + θ3 = θ2 + θ4 ;

and the values for βi are given in parametrized form by

(2.3) (β1, β2, β3, β4) = (θ4, θ1 − θ4, θ3, 0) + t(−1, 1,−1, 1)

Proof. Then, we use the property of the Blum medial axis that the angles from
the tangent line Li to the radial vectors on each side of Li are equal, to obtain the
equations

θ1 = β1 + β2

θ2 = β2 + β3

θ3 = β3 + β4

θ4 = β4 + β1(2.4)

Then, using a standard method such as Gaussian elimination, we see that (2.2) is a
necessary condition for a solution and then we may solve these for the βi to obtain
the above solutions given by (2.3). �

Remark 2.3. We observe that a consequence of Lemma 2.2, given fixed angles θi,
i = 1, . . . , 4, there is a family of angles for the radial vectors consistent with the
Blum condition. As a consequence, even if the diffeomorphism preserves the Blum
medial axis, there is a continuous family of consistent angles for radial vectors, so
it would not in general preserve the directions of the radial vectors.

These arguments extend to higher dimensions by the properties of the Blum
medial axis in the generic case or in the nongeneric case for a skeletal structure
provided at any smooth point x ∈M the pair the radial vectors U1(x) and U2(x) at
x make equal angles with TxM and satisfy U1(x) − U2(x) is normal to TxM . This
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Figure 3. The configuration of tangent lines, radial vectors and
angles at a branch point of the Blum medial axis where four curves
meet for a region in R2.

continues to hold in the limit for a singular point x where we approach x along a
smooth sheet of M . Let Γ denote a codimension 2 branching stratum with x ∈ Γ,
and for a smooth stratumMi with Γ in its closure, we let TxMi denote the limiting
tangent plane to Mi at x. By the properties of Blum medial axes in the generic
case or skeletal structures, TxΓ ⊂ TxMi.

Then, let P denote the orthogonal plane to TxΓ at x. For P we choose an
orthonormal basis {e1, e2} with e1 ∈ TxMi and so e2 ⊥ TxMi. Since U1(x)−U2(x)
is normal to TxMi we may write them U1 = v+ae1+be2 and U1 = v+ae1−be2 with
v ∈ TxΓ. The hyperplanes Πi spanned by TxΓ with each Ui therefore also contain,
respectively, ae1 ± be2. As P is also orthogonal (and hence transverse) to TxMi,
Mi∩P is a curve γ with limiting point x and limiting tangent line Txγ = P ∩TxMi

which is spanned by e1. It follows that the vectors ae1+be2 and ae1−be2 in P make
equal angles with e1 and hence the tangent line Tγ . However, the angles between
the hyperplanes Πi and TxMi are given by these angles in the orthogonal plane P .

Since we may repeat this argument for each smooth sheet whose closure contains
the stratum Γ, we arrive in the generic case with the configuration of line and curves
in the orthogonal plane P as in Fig. 2, and in the nongeneric case with four smooth
sheets meeting along a branching stratum Γ the configuration in P as in Fig. 3.

3. Cross Ratio

Next, we recall the properties of the cross ratio, which is an invariant of four
ordered points in a projective line, and indicate how it applies to four hypersurfaces
Hi in Rn which contain a common codimension 2 subspace L.

Cross Ratio for Points in a Projective Line.

First the cross ratio is generally defined for four distinct points {z1, . . . , z4} in a
complex projective line CP 1. The cross ratio is defined by

(3.1) R(z1, . . . , z4) =
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
.
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As CP 1 can be viewed as the complex plane with point added at ∞, this value is
defined if no zi = ∞, and there is an assignment in the case one is ∞ by taking a
limit as the zi → ∞.

We note that this depends on the order of the zi. If the order is changed and we
let λ denote the cross ratio in (3.1), then after permuting the order of the points,
we obtain five additional values obtained from λ, under the operations:

(3.2)
1

λ
, 1− λ,

1

1− λ
,

λ− 1

λ
,

λ

λ− 1

These are the set of values obtained under the action of the finite group generated
by the two transformations λ 7→ 1

λ
and λ 7→ 1 − λ. This group is isomorphic to

the permutation group on three letters S3. Furthermore, it is a basic fact from
projective geometry that for any collection of four ordered distinct points, the cross
ratio is invariant under a projective transformations of CP 1. Now points in CP 1

can be identified with lines in C2 through the origin. Then the corresponding basic
fact from projective geometry states that for any collection of four ordered distinct
lines in C2 through the origin, the cross ratio is invariant under any invertible linear
transformation of C2.

In the case that the points are real, then the cross ratios are real and there is a
corresponding statement for lines in R2. These and other properties may be found,
for example, in [Az, §3.3].

To compute the cross ratio of four lines in R2, suppose they are rotated so none
lies along the y-axis. Then they all have the form y = aix, i = 1, . . . , 4. If we let the
y-axis be the line at infinity, and the line x = 1 corresponds to the complementary
affine line, then the line y = aix corresponds to the point y = ai, and the cross

ratio is given by (a1−a4)(a3−a2)
(a1−a2)(a3−a4)

.

Generalized Cross Ratio for Hyperplanes in Cn.

The notion of cross ratio extends to hyperplanes in Cn. Let Hi ⊂ Cn, i =
1, · · · , 4, denote hyperplanes containing the codimension 2 subspace L. If L⊥ de-
notes the orthogonal complement to L, then each Hi ∩L

⊥ = Li ⊂ L⊥ ≃ C2. Thus,
the four ordered lines have a cross ratio R(L1, . . . , L4); and a permutation of the
hyperplanes gives a set of six values as above. Moreover, if instead of L⊥, we chose
a plane Π through the origin and transverse to L, then we obtain a second set of
ordered lines L′

i = Hi ∩ Π = Li ⊂ Π ≃ C
2. If we consider the restriction to Π

of the orthogonal projection of Cn to L⊥ along L, then it gives an isomorphism
Π ≃ L which sends L′

i 7→ Li. Hence by the invariance of the cross ratio under
invertible linear transformations, we obtain the same value for the cross ratio using
either L⊥ or Π. Hence, the cross ratio is an intrinsic invariant of the four ordered
hyperplanes and is invariant under invertible linear transformations of Cn. Again,
there is a corresponding result for hyperplanes in Rn. In fact, what we really are
saying is that the set of hyperplanes containing L forms a projective line in the dual
projective space CPn−1 ∗ and the cross ratio is the invariant for that projective line.

In the next sections we see the consequences for rigidity properties of the cross
ration and its generalization for hyperplanes.
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4. Rigidity Properties for Four Smooth Strata Meeting Along a

Branching Submanifold

We begin by considering regions in Rn. Suppose that the region Ω ⊂ Rn has a
nongeneric Blum medial axis M which together with its multivalued radial vector
field still satisfies the condition for being a skeletal structure. In particular, we
suppose there is a codimension 2 branching stratum Γ ⊂ M along which four
smooth (codimension one) medial sheets Sj , j = 1, . . . , 4 meet, and moreover for
any x ∈ Γ there are unique limiting tangent planes TxSj with TxΓ ⊂ TxSj for each j.
We then define a cross ratio invariant for this situation. For the point x ∈ Γ we have
four hyperplanes Ti = TxSi, and they each contain the codimension two subspace
TxΓ. Hence, by the arguments in §3, the four distinct hyperplanes containing the
common subspace TxΓ have a real-valued cross ratio. Allowing different ordering
again gives the six possible real values as in (3.2). We can thus give a well-define
cross ratio map χ : Γ → RP 1/S3 ≃ S1, where the target space consists of the sets
of corresponding cross ratio values.

Suppose that the two regions Ωi ⊂ Rn both have medial axes which each contain

a submanifold Γi as above, along which four smooth medial sheets S
(i)
j , j = 1, . . . , 4

meet. Then there is the following strong rigidity condition on a diffeomorphism.

Theorem 4.1 (Strong Generalized Rigidity). Suppose there is a diffeomorphism ϕ

defined in a neighborhood of Γ1 which sends Γ1 to Γ2 and the medial sheets S
(1)
j of

Ω1 to those S
(2)
j of Ω2. Then, for χi, i = 1, 2 denoting the cross ratio maps for Γi,

we must have χ2 ◦ ϕ = χ1.

Proof. For any point x ∈ Γ1, the derivative dxϕ will send the limiting tangent planes

T
(1)
j = TxS

(1)
j to T

(2)
j = Tϕ(x)S

(2)
j . Also, the four tangent planes T

(1)
j contain the

common codimension 2 tangent space TxΓ1, and T
(2)
j , the common codimension 2

tangent space Tϕ(x)Γ2.
Now by the above arguments, through a point x, resp. ϕ(x), there is again a set

of cross ratios for each ordering. Thus, the sets of four limiting tangent planes gives

rise to a set of six values as in (3.2). Since dϕ(x)(T
(1)
j ) = T

(2)
j for j = 1, · · · , 4, it

follows by the invariance of the cross ratios that the two sets of cross ratios must
agree. Thus, the induced maps χ2 ◦ ϕ and χ1 must have the same values for each
point x ∈ Γ1. �

The cross ratio is a “rigid” invariant for four lines in R2 meeting at a point.
As the four tangent hyperplanes vary continuously, the cross ratio maps χi on the
branching stratum are varying and so the rigidity has a very strong form that they
must be matched exactly by the diffeomorphism for each pair of points.

The simplest form of this is for regions in R2.

Example 4.2. We consider two regions Ωi ⊂ R2, i = 1, 2, as in Fig. 1 with
smooth boundaries Bi, and medial axes Mi. There is a diffeomorphism between
the boundaries which preserves the corresponding medial data on the boundary.
By this medial data we mean the four points of types A3 and four points of types
A4

1 on the boundary corresponding to the points on the medial axis with their
corresponding medial type. This diffeomorphism satisfies properties 1) and 2). We
consider the tangent lines to the four curve branches meeting at the center (A4

1)



RIGIDITY PROPERTIES OF THE BLUM MEDIAL AXIS 9

point. Each set of these four lines have, up to a choice of ordering, a set of cross

ratios {λ
(i)
j }, i = 1, 2.

Suppose we have two medial axes each consisting of four branch curves {γ
(i)
j : j =

1, . . . , 4} for i = 1, 2. Let ℓ
(i)
j denote the tangent line to γ

(i)
j at the corresponding

center point. There is the following special case of Theorem 4.1.

Corollary 4.3. If the sets of tangent lines ℓ
(i)
j , j = 1, . . . , 4, give distinct sets of six

values for each medial axis, then there does not exist a diffeomorphism ϕ : U1 → U2

defined between the neighborhoods Ui of the center points which maps one set of

the four branch curves γ
(1)
j to the other set of the four branch curves γ

(2)
j (after

renumbering).

Proof. In this case there is only a single set of cross ratios. If they disagree at
the branch points then there cannot be a diffeomorphism preserving the medial
axes. �

In the preceding situation, suppose we wish to define a diffeomorphism preserving
the medial axis. Suppose the diffeomorphism is constructed to send three of the four
curves to three of the curves for the second configuration, but the cross ratios are
significantly different. Then the image of the fourth curve will differ significantly
from the fourth curve.

Remark 4.4. Since the cross ratio value may be any real number it follows that
that given any two random choices of sets of four distinct lines, with probability 1,
the sets of cross ratios will be distinct. Thus, for arbitrary random choices of regions
as in Figure 1. there will be no diffeomorphism between the regions preserving the
medial axes.

(a

α

α

(b

Figure 4. Illustrating for two Blum medial axes for regions in
R2 where four curves meet at a branch point, the nonexistence of
a local diffeomorphism mapping one Blum medial axis to the other.

Example 4.5. We consider the configuration of half lines in Fig. 4 which represent
medial Blum medial axes of regions Ω1 and Ω2 in a neighborhood of a branch point.
Although the configurations are degenerate so the cross ratio does not apply. How-
ever, we illustrate how far a local diffeomorphism must distort the radial structure.
Consider the local diffeomorphism ϕ : Ω1 ≃ Ω2 which maps a neighborhood of the
branch point (denoted 0) of one to that of the other. Suppose ϕ maps the x-axis to
the x-axis and the positive y-axis to the line in the first quadrant making the angle
α with the positive x-axis. Then, the derivative dϕ(0) is a linear transformation
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sending the x-axis to the x-axis, so dϕ(0) sends e1 = (1, 0) 7→ (s, 0) for some s > 0.
Also, as ϕ sends the positive y-axis to the angled line in the first quadrant, it must
send e2 = (0, 1) 7→ (r cos(α), r sin(α)) for some r > 0. This completely determines
the derivative dϕ(0).

Then, the negative y-axis is being sent to a curve, which by the linearity of dϕ(0),
has tangent vector at the origin given by dϕ(0)((0,−1)) = (−r cos(α),−r sin(α)).
Thus, the curve initially heads into the third quadrant making an angle α with the
negative x-axis. For example, if α = π/3, then the curve will initially make an
angle of 2π/3 with the second angled line in the fourth quadrant that we would like
it to map to. Hence, it must make a large turn to even go in the roughly correct
direction.

This example was investigated by Yushkevich who using the algorithm in [Y]
to obtain a video which shows that the y-axis of the source actually maps to a
parabolic curve tangent to the y-axis. Thus, initially two of the medial curves
move in a significantly different direction from those of the target medial curves.
The preceding results show that any attempt to construct a local diffeomorphism
must encounter a similar phenomenon when there are different cross ratios. We
show in the next section that if we include the radial vectors in the Blum structure,
that a similar phenomenon occurs in the generic case.

Remark 4.6. Because there are many different ways in which such a configuration
may occur within a nongeneric medial axis, it follows that there are many circum-
stances where there is no diffeomorphism preserving the medial axis. In particular,
if there are more than four smooth sheets meeting along a branching submanifold,
then successively choosing four such sheets gives a set of cross ratio invariants.
While such a condition is not generic, we next consider further invariants which
incorporate the radial vectors at the branch points.

5. Rigidity of Infinitesimal Properties for Smooth Strata Meeting

Generically Along a Branching Submanifold

We next consider the effect of diffeomorphisms in the generic case. Generically
for regions in R2, 3 medial curves meet at a branch point; or for regions in R3,
three medial surfaces meeting along a Y -branch curve, and quite generally for a
generic region in Rn there can be three smooth sheets of the medial axis meeting
along a branching codimension 2 subspace Γ. For a branch point x ∈ Γ, there are
three radial vectors from x to the boundary. Each of the radial vectors from x
determine a radial line in the complementary region corresponding to the point on
the boundary. This line along with tangent space TxΓ determines a hypersurface
in Rn. This hyperplane together with the other three limiting tangent hyperplanes
of the smooth sheets again give four hyperplanes containing the codimension 2
subspace TxΓ. These have a cross ratio. We can compute it by intersecting the
hyperplanes with a plane P through x and transverse to TxΓ. We use the notation
from §2, we compare the cross ratios formed from the three lines Li, i = 1, . . . , 3

obtained by intersecting with P the tangent hyperplanes and the line L̃, determined
by intersecting with P the hyperplane containing TxΓ and one of the radial vectors
(Uj will be understood). Thus, there are three cases.

Referring to Fig. 2, we first determine the four values ai for the ordered lines

L1, L2, L3, L̃ given in the form y = aix where we rotate so that L1 is the x-axis, we
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obtain (5.1).

(5.1) (a1, a2, a3, a4) = (0,− tan(θ1), tan(θ3), tan(θ2))

Likewise, for the other two cases we rotate so that L2, resp. L3 is the x-axis, for

the corresponding lines L̃ for U2, resp. U3. Then, we obtain the values for the ai
given by (5.2).

(5.2) (0,− tan(θ2), tan(θ1), tan(θ3)) resp. (0,− tan(θ3), tan(θ2), tan(θ1)) .

We observe the the three sets of values are successively transformed by the trans-
formation

(0,−c1, c2, c3) 7→ (0,−c3, c1, c2) .

However, the set of six cross ratios for a set of values (0,−c1, c2, c3) is not in-
variant under this transformation. Thus, in general the sets of cross ratios will be
distinct for the three radial vectors. We illustrate this with an example.

Example 5.1. We consider the case of the angles (θ1, θ2, θ3) = (23π,
5
9π,

7
9π). We

obtain the set of values in (5.1) and (5.2) with corresponding cross ratios λi to be

[0, 5.671281833,−1.732050808,−0.8390996312] λ1 = −1.226681596

[0, 0.8390996312,−5.671281833,−1.732050808] λ2 = −3.411474126

[0, 1.732050808,−0.8390996312,−5.671281833] λ3 = 1.742227197(5.3)

Then, the corresponding sets of six cross ratio values given by the cross ratio
and the other five values obtained by permuting the order of the values as in (3.2)
are given by

[−1.226681596,−0.8152074697, 2.226681596, 0.4490987853, 1.8152074700.5509012147]

[−3.411474126,−0.2931284140, 4.411474126, 0.2266815970, 1.293128414, 0.7733184030]

[1.742227197, 0.5739779529,−0.742227197,−1.347296359, 0.4260220471, 2.347296359]

(5.4)

We see these are distinct sets of cross ratio values.

Consequently, we have the following rigidity theorem in the generic case for
the Blum structure at a branch point. We consider regions Ωi, i = 1, 2, with
generic Blum medial axes. We suppose that there is a local diffeomorphism ϕ
from a neighborhood of a branch point x ∈ Γ1 for Γ1 the A3

1 stratum for Ω1, to a

neighborhood ϕ(x) ∈ Γ2 for Γ2 the A3
1 stratum for Ω2. We now let χ

(1)
j : Γ1 → S1

denote the corresponding cross ratio for the three limiting tangent spaces at x
to the smooth sheets and the hyperplane defined by the radial vector Uj , with

χ
(2)
j : Γ2 → S1. the corresponding cross ratios for Γ2.

Theorem 5.2 (Rigidity for Generalized Blum Structures). Suppose the diffeomor-
phism ϕ defined in a neighborhood of the branch point x ∈ Γ1 which sends Γ1 to Γ2,

sending the medial sheets S
(1)
j of Ω1 to those S

(2)
j of Ω2, and also dϕ(x) preserves

radial lines, i.e. dϕ(x)(〈Ui(x)〉) = 〈U ′
i(ϕ(x))〉 for the radial vectors Ui on Γ1 and

U ′
i on Γ2. Then, for χ

(i)
j , j = 1, 2, 3 denoting the cross ratio maps for Γi, we must

have χ
(2)
j ◦ ϕ = χ

(1)
j for j = 1, 2, 3.
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The proof follows by an analogous argument to that for Theorem 4.1 using
instead the cross ratios for the radial vectors. It has as a corollary the behavior of
diffeomorphisms between regions with generic Blum medial axes.

Corollary 5.3. Let ϕ : Ω1 → Ω2 be a diffeomorphism between generic regions of
Rn, which maps the Blum medial axis of Ω1 to that of Ω2. Suppose for corresponding
branch points x ∈ Ω1 and x′ = ϕ(x) ∈ Ω1 these sets of cross ratios for the Blum
structures of the two regions are different. Then the diffeomorphism will map the
radial lines in Ω1 from x to curves from x′ in Ω2 whose tangent lines at x′ differ
from the radial lines at x′. Thus, the diffeomorphism ϕ will distort the radial
structure at such branch points.

In particular, this gives criteria for regions in R2 at branch points, and for
regions in R

3 at points along Y -branch curves. Thus, for regions in either R
2

or R3, diffeomorphisms between regions which preserve the medial axis will either
be severely restricted in the nongeneric case by the set of cross ratios for the medial
sheets at branch points, or in the generic case it can map the medial axis, but if
the set of cross ratios differ, it will deform the radial structure. Thus, since the
cross ratios control whether such diffeomorphisms can match non-generic templates
to similar non-generic target shapes accurately, the question is whether there is a
finite bound on how closely they can match a target shape when the set of cross
ratios do not agree.

Local Uniqueness of Angles from Triples of Cross Ratios.

We conclude this section by explaining how almost all triples of allowable angles
at a generic branching point, the three cross ratios locally uniquely determine the
triple of angles. The set of allowable angles θ = (θ1, θ2, θ3) ∈ (0, π)3 satisfies
θ1 + θ2 + θ3 = 2π. By “almost all” we mean that it is true on a non-empty open
subset of full 2-dimensional measure in this subspace. Then, the local uniqueness
has the following form.

Theorem 5.4. There is an open set having full 2-dimensional measure in the sub-
space of (0, π)3 consisting of allowable triples θ, such that the corresponding triple of
cross ratios uniquely determines θ among neighboring triples θ

′ in a neighborhood
of θ.

Proof. There are two steps. First we define a Zariski open subset of (0, π)3 (which
is the complement of a set of algebraic subsets) on which is defined the triple cross
ratio map. To define the Zariski open subset, we first remove the subset where some
θi =

π
2 or some θi = θj for i 6= j. The resulting Zariski open subset we denote by

I3. We will further restrict to the subset Q3 ⊂ I3 satisfying θ1+θ2+θ3 = 2π. This
Zariski open subset Q3 has full 2-dimensional measure in Q3. Second, we consider
on this open subset the composition of the map with coefficient functions tan(θi)
and the cross ratio map using the three cross ratios of the 4-tuples given in (5.1)
and (5.2). We show it has rank 2 off a closed analytic subset, whose complement U
still has full 2-dimensional measure. Thus, for any point θ ∈ U , the composition is
an immersion. Hence, there is a neighborhood U ′ of θ on which the composition is
an embedding. It follows that the cross ratio values uniquely determine the triple
angle θ

′ for all θ′ ∈ U ′.
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It remains to show the stated properties of the mapping. We first define a series
of maps to give the triple cross ratio map on I3.
(5.5)

Q3
i

−−−−→ I3
τ

−−−−→ (R\{0})3\(∆R)(3)
c

−−−−→ (R\{0})3
L

−−−−→ (R\{0})3

Here, for any spaceX , the generalized k-diagonal is defined by (∆X)(k) = {(x1, . . . , xk) ∈
Xk : xi = xj for some i 6= j}. In (5.5), i denotes inclusion. Next, the map-
ping τ(θ1, θ2, θ3) = (tan(θ1), tan(θ2), tan(θ3)). Then, τ is an analytic diffeomor-
phism as tan defines an analytic diffeomorphism (0, π)\{π

2 } ≃ R\{0}. Third, for

(b1, b2, b3) ∈ (R\{0})3\(∆R)(3), c is defined by the triple of cross ratios

c(b1, b2, b3) = ((R(0,−b1, b3, b2), R(0,−b2, b1, b3), R(0,−b3, b2, b1)).

Lastly, L is defined by L(y1, y2, y3) = (ln(|y1|), ln(|y2|), ln(|y3|)).
Then, we observe that the composition c ◦ τ ◦ i is the triple cross ratio map and

is an analytic map on Q3. Hence, the set of points where it has rank < 2 is an
analytic Zariski closed subset, which if not all of Q3, has measure zero. It follows
that the cross ratio values uniquely determine the triple angle θ

′ for all θ′ ∈ U ′.
Lastly, as i is an embedding, τ is a diffeomorphism, and L is everywhere a local
diffeomorphism, it is sufficient to show that L ◦ c restricted to d(τ ◦ i)(θ)(TθQ)
has rank 2 for some θ ∈ U . Since each cross ratio is homogeneous of degree 0, the
Euler vector field (b1, b2, b3) at each point (b1, b2, b3) is in the kernel of dc. Also, the
composition L ◦ c has derivative with entries rational functions and is easily seen
to have rank 2 on a Zariski open set. Thus, the Euler vector field actually spans
the kernel of dc on a Zariski open set. Thus, the rank of the composition will be
2 at θ = (θ1, θ2, θ3) in the Zariski open set unless the Euler vector field belongs to
d(τ ◦ i)(θ)(TθQ). Third, the image of the tangent space is seen to be spanned by
(1 + tan2(θ1),−(1 + tan2(θ2), 0) and (1 + tan2(θ1), 0,−(1 + tan2(θ3)). Then, these
two vectors together with the Euler vector field will form a determinant which is
non-zero on the complement of an algebraic subset giving algebraic conditions on
the tan(θi). Thus, on an analytic Zariski closed subset of Q, the composition has
rank 2.

This completes the proof. �

Remark 5.5 (Conjecture/Problem). In fact, there may well be a stronger global
form of Theorem 5.4 that the triple cross ratio, as an ordered triple uniquely (glob-
ally) determines the allowable ordered triple of angles. If so then this would give
the strongest form of rigidity: a diffeomorphism between regions that preserves the
medial axis and infinitesimally preserves the radial lines at points of the medial axis
must preserve angles at branch points of the medial axis. We conjecture that this
is true. A first step in verifying this would be to identify the subset where the rank
is less than 2 and examine the behavior of the triple ratio map at these points.

6. Second Order Rigidity Conditions on Diffeomorphisms Preserving

the Medial Axis

We have seen that at branch points there are cross ratio conditions on diffeomor-
phisms at branch points. Even if these conditions are satisfied at branch points,
there are also second order conditions on the diffeomorphism in terms of the radial
shape operators for the two regions defined by the Blum structure. We recall this
condition to conclude our discussion. The condition is described in full generality.



14 JAMES DAMON

Given regions Ωi ⊂ Rn, i = 1, 2, with smooth boundaries B, resp. B′, we suppose
they have skeletal structures (M,U) for Ω1 and (M ′, U ′) for Ω2. HereM , resp. M ′,
are the skeletal sets which allow relaxation of the conditions for the Blum medial
axis; and U resp. U ′ are the multivalued vector fields.

We suppose that there is a diffeomorphism ϕ from a neighborhood of M1 to a
neighborhood of M2, which maps M1 to M2 and dϕ sends each U(x) 7→ U ′(ϕ(x)).
Also, if U = r1 · U1 and U ′ = r2 · U ′

1 for unit vector fields U1, resp. U ′
1, we let

U ′
1(ϕ(x)) = σ(x)U1(x) for a smooth “scale function”σ(x). Each of the skeletal

structures have for each smoothly varying value U on a smooth point, or a singular
point which is a limiting point of a smooth sheet, a radial shape operator Srad :
TxM → TxM and similarly for M ′.

We define a “radial distortion operator” Qϕ : TxM → TxM , by

Qϕ(v) = −dϕ−1(projU ′(d2(ϕx(v, U1) ,

where projU ′ denotes projection along 〈U ′〉 onto Tϕ(x)M
′. At a point x ∈ M , let

v denote a basis for TxM with v′ denoting the image v′ = dϕ(x)(v). For these
bases we let Sv, resp. Sv

′ , denote the matrix representations of the radial shape
operators Srad for (M,U), resp. S′

rad for (M ′, U ′). We also let Qϕv denote the
matrix representation of Qϕ with respect to the basis v. Then there is the following
relation (see [D1, Thm. 5.4]).

(6.1) Sv
′ = σ(ϕ(x)) (Sv +Qϕv) .

We note that in the “partial Blum case”for which U is orthogonal to the bound-
ary B at the boundary point x + U(x), the differential geometry of B, specifically
the differential geometric shape operator is given by a specific formula in terms
of Srad and the radial function r and this formula is invertible (see e.g. [D1, §3]).
Thus, the relation between the differential geometry of the boundaries at each point
is captured by this second order derivative information for the diffeomorphism at
the corresponding medial axis point.

Remark 6.1. If instead dϕ only preserves the radial lines, we can replace U ′ by

Ũ ′(ϕ(x)) = dϕ(x)(U(x)), which gives a radial vector field on M ′ which has the
same radial shape operators as U ′ (as the unit vector fields agree). Thus, (6.1) will

again hold, except σ will be replaced by the scale factor for U and Ũ ′.
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