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Abstract

A new approach is presented for computing the interior medial axes of generic regions in R
3 bounded by C

(4)-smooth parametric
B-spline surfaces. The generic structure of the 3D medial axis is a set of smooth surfaces along with a singular set consisting of
edge curves, branch curves, fin points and six junction points. In this work, the medial axis singular set is first computed directly
from the B-spline representation using a collection of robust higher order techniques. Medial axis surfaces are computed as a time
trace of the evolving self-intersection set of the boundary under the the eikonal (grassfire) flow, where the bounding surfaces are
dynamically offset along the inward normal direction. The eikonal flow results in special transition points that create, modify or
annihilate evolving curve fronts of the (self-) intersection set. The transition points are explicitly identified using the B-spline
representation. Evolution of the (self-) intersection set is computed by adapting a method for tracking intersection curves of two
different surfaces deforming over generalized offset vector fields. The proposed algorithm accurately computes connected surfaces
of the medial axis as well its singular set. This presents a complete solution along with accurate topological structure.

1 Introduction

The medial axis [7] is a fundamental tool for the anal-
ysis of three dimensional objects in a variety of geometric
processing applications such as volumetric mesh genera-
tion [39,35], feature extraction [26,28], tool-path creation in
computer-aided manufacturing [25] and shape search and
retrieval [43]. The medial axis has also been used in other
scientific applications including segmentation of medical
images [34], statistical shape analysis of populations of ob-
jects [29], and motion planning for robotics [21,18]. A sur-
vey of medial axis applications is presented in [42].

There has been significant interest in automatically com-
puting the medial axis of objects. The approaches presented
in [37,36] compute partial solutions for a restricted set of
objects bounded by B-spline surfaces. Most existing ap-
proaches require discrete approximations of smooth sur-
faces such as polygonal meshes or point sampled geome-
try. Accurate techniques that compute the medial axis and
its topology from polygonal boundary representations have
been demonstrated for low polygon count models [11,40].
Computationally fast techniques for point sampled geom-
etry [14,2] compute approximations as a set of polygons
on the medial axis without topological structure. Consid-
erable human interaction is required in order to infer this
information. Discrete approximations of smooth surfaces
introduce artifacts that are not part of the medial axis of
regions bounded by smooth surfaces and considerable ef-
fort is required to remove them.

This paper presents a new approach for computing the
complete topologically correct interior medial axis of a
three dimensional region directly from parametric B-spline
representations of its boundary surfaces. Figure 1 shows
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Fig. 1. Medial axis of a 3D region bounded by a B-spline surface.

a B-spline surface enclosing a region in R
3 and its corre-

sponding medial axis. The medial axis consists of surfaces
(shown in orange, brown, bluish violet) bounded by edge
curves (thick blue), and branch curves (thick yellow) where
surfaces meet. The medial axis also contains fin points
(purple spheres) where edge curves and branch curves
meet, and a six junction point (green sphere) where six
surfaces (and four branch curves) meet at a point. Precise
mathematical definitions of each entity type are presented
in Section 2.

The proposed approach computes all entities of the me-
dial axis with arbitrary user specified accuracy along with
correct topology. Parameter values of boundary surface
points corresponding to every medial axis point and the re-
spective distance is also computed, which gives the medial
axis transform. The main contributions of this paper are:
– A new algorithm for computing medial axis surfaces.
– A new algorithm for tracing branch curves.
– Robust technique for computing edge curves.
– Robust techniques for computing fin and six junction

points.
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Fig. 2. Medial axis point types. Surface S shown in grey, surface points in red, medial axis points in blue. In (a)-(d), medial axis surfaces are
also shown in grey. Arrows point in the corresponding surface normal direction.

The B-spline representation enables computation of the
medial axis as a time trace of the evolving (self-) intersec-
tion set of the boundary surface under the eikonal flow (also
called grassfire flow [42]). At each instant of the eikonal
flow, every point on the surface is offset by a fixed distance
along the corresponding inward surface normal direction.
The eikonal flow method has been used to compute the
medial axis of regions specified within volumetric scalar
grids [41]. That method classifies the points of the discrete
grid as whether or not they belong to the medial axis using
computed properties of the eikonal flow at the grid points.
The method proposed in this paper dynamically emulates
the (self-) intersections of the eikonal flow using higher or-
der methods to accurately compute the medial axis of re-
gions bounded by B-spline surfaces.

The paper is organized as follows. Section 2 presents the
definition and properties of the 3D medial axis. Section 3
presents related work. An overview of the proposed algo-
rithm is presented in Section 4 with details in Sections 5,
6 and 7. Results are presented in Section 8 and the contri-
butions of the paper are summarized in Section 9.

2 3D Medial Axis and its Local Structure

Mathematical properties of the medial axis are well doc-
umented in the existing literature. We follow the definition
and notation given in [20,12] and present it here.
Definition 2.1 The medial axis of a region in R3 enclosed
by a bounding surface S is the locus of centers of maximally
inscribed spheres that are tangent to two points on S, to-
gether with the limit points of the locus that exhibit special
configurations (explained below).

A complete characterization of the local structure of the
3D medial axis for generic regions is presented in [20]. We
briefly describe the properties of the 3D medial axis here.
The assumption that the 3D region is generic includes “al-
most all” situations in the precise mathematical sense [12].

For a maximally inscribed sphere, a point of tangency on
the boundary is of Ak type if the sphere has k − th order
contact with the boundary [20]. Only the values k = 1
or 3 occur in the generic situation for medial axis points.
When k = 1, the sphere is tangent to the surface at the
contact point. When k = 3, in addition to the tangency
property, the radius of the sphere is a radius of principal

curvature of the corresponding contact point on the surface
and the contact point on the surface is a ridge point. The
definition of a ridge point is presented in Section 6.1. A
medial axis point with a maximal sphere with m points
of tangency is denoted Ak1

Ak2
· · ·Akm

, and the type for a
sphere with m A1 contact points will be abbreviated to Am

1 .
For each medial axis point, our work maintains the set of
parameter values corresponding to each contact point on
the boundary and the distance to the boundary (radius of
maximal sphere) in addition to the coordinate values of the
center of the sphere.

The medial axis of a generic 3D object consists of the
following surface, curve and point entities [20] (See Figure 2
for illustrations of each medial axis point types):

(a) A2
1 surfaces. The locus of A2

1 points are medial sur-
faces on which the maximal sphere at every point is
tangent to two points on the surface.

(b) A3 edge curves. The maximally inscribed sphere at an
A3 point is in contact with an elliptic ridge point on
the surface (See Section 6.1). The locus of A3 points
are curve segments or loops that partially or com-
pletely bound A2

1 surfaces.
(c) A3

1 junction curves. The maximal sphere at an A3
1

point is tangent to three points on the surface. The
locus of A3

1 points are curve segments or loops that
partially or completely bound A2

1 surfaces. Three A2
1

surfaces meet along an A3
1 curve.

(d) A1A3 fin points. At such a point, an A3 curve seg-
ment meets an A3

1 curve segment and it marks the
beginning/end of each curve. The maximal sphere at
an A1A3 point is in contact with two surface points -
one with A1 type and the other with A3 type contact.

(e) A4
1 six junction points. The maximal sphere at an A4

1

point is tangent to four points on the surface. Such
points occur when six A2

1 surfaces meet. This can also
be viewed as points where four A3

1 curves meet.

3 Related Work

We briefly review existing techniques for computing the
3D medial axis. The approaches can be broadly classified
into Voronoi, distance field, eikonal and tracing based
methods. First, we present techniques used for piecewise
smooth surface representations. Since many approaches
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suggest discretizing smooth surfaces, we summarize ex-
isting techniques used for discrete surface representations
including point clouds, polygonal meshes and volumetric
images (scalar grid data). This is by no means an exhaus-
tive review, but presents representative works in each area.
Extensive surveys are presented in [42,6].

Piecewise Smooth Representations. The tracing
approach of [37] accurately computes partial medial axes
of objects bounded by freeform surfaces. The method
assumes that the object has at least one convex vertex
(corner point). A3

1 curves (termed seams in their paper)
are numerically traced from convex vertices. A4

1 points
are detected during seam tracing using distance to surface
checks, at which three new A3

1 curves are spawned. Seam
tracing ends either at a convex vertex or at an A3 point
which is detected using curvature and distance checks at
seam points. The paper does not present results on com-
puting A2

1 surfaces. Since the method assumes that there
is a convex edge on the surface that is a part of a bounding
loop for an A2

1 surface, it is not suitable for medial axes
with A3 boundary curves that may end at A1A3 points
such as models with fins.

Bisectors of pairs of freeform surfaces are considered as
building blocks of the medial axis. Accurate techniques for
computing bisector surfaces of rational parametric surfaces
are presented in [16]. However, there is no technique in
the existing literature to identify all medial entities (such
as fin points, six junction points) and their topology from
the bisector surfaces. Related methods include bisectors of
CSG objects [27] and Voronoi diagrams of collections of
planes, sphere and cylinders [24].

A method for computing the 3D medial axis of extruded
and revolved objects bounded by freeform surfaces is pre-
sented in [36]. The method computes the 2D medial axis of
a planar profile face which is then transformed (extruded
or revolved) to obtain a 3D medial axis.

Point Clouds. Algorithms for computing medial axes
from point sampled surfaces typically begin with comput-
ing Voronoi diagrams of the point sets and then identify me-
dial skeletons as subsets of the Voronoi graphs [1,2,13,14,9].
The shock scaffold method [31] presents a combinatorial al-
gorithm to identify boundary points corresponding to me-
dial axis points.

Polygonal Meshes. Foskey et al. [19] analyze the gra-
dient of the distance field to the surface to identify medial
skeletons. A polygonal approximation that has the same
homotopy type as the medial skeleton is computed as a sub-
set of the Voronoi diagram in [44]. Methods based on trac-
ing seam curves and computing junctions of seam curves
are presented in [11,40]. An offset based approach for com-
puting approximations of the 3D medial axis of polyhedra
is presented in [22].

Volumetric Images. A variety of techniques based on
thinning of voxel data grids in an erosion like process start-
ing from the object surface have been presented as sur-
veyed in [30,45]. Siddiqi et al. [41] simulate eikonal flow on
discrete grids using partial differential equations to detect

singularities of the flow based on the average outward flux
of the flow. Medial axis voxels are detected by combining
the flux measurement with a homotopy preserving thinning
process. Methods that rely on the computation of height
ridges of distance fields are presented in [8,3].

Although mathematical properties of the medial axis are
well documented in the existing literature, to date state of
the art techniques have been able to compute pieces of me-
dial representations only for discrete approximations of ob-
jects. In addition, approximate or simplified solutions using
discrete techniques and partial solutions using higher or-
der methods have been computed due to the complexity in
structure and inherent nonlinearity of the medial axis [38].
This paper proposes a new higher order method that, in
conjunction with results from singularity theory, automat-
ically computes medial axes of three dimensional objects
accurately along with correct structural information and
does not generate non-medial artifacts.

4 Algorithm Overview

Let B be the boundary of a region in R
3 represented by a

closed tensor product parametric B-spline surface S(u, v) ∈
C(4). The surface normal, n(u, v) = Su×Sv

‖Su×Sv‖
(assumed ori-

ented inward for a closed surface, with ‖ Su × Sv ‖6= 0)
where, subscripts indicate the partial derivatives with re-
spect to the corresponding parameter variable. The offset
surface resulting from the eikonal flow at a time t is given
by σ(u, v, t) = S(u, v) + t n(u, v), t ≥ 0. The variable t is
exactly the offset distance and is also referred to as time
to emphasize the dynamic aspect of the algorithm. As the
surface evolves under the eikonal flow in the increasing t di-
rection, different regions start intersecting with each other
creating (self-) intersection curves that grow and interact
with each other until they collapse to single points and die.
The approach presented in this paper exactly models this
behavior to compute the medial axis. The medial axis con-
sists of only the first intersection points of evolving offsets
of any two given points on the surface.

During the course of the eikonal flow, special changes
to the structure of intersection curves occur at certain
transition points (including A1A3 and A4

1 points), where
intersection curves are created, interact with each other
to undergo intermediate transitions or get annihilated.
Away from transition points, the intersection curves evolve
smoothly to sweep out A2

1 surfaces of the medial axis.
An intersection curve consists of a connected set of A2

1

points, and A3, A3
1, A1A3 or A4

1 points at curve ends where
necessary, all sharing the same offset distance.

Algorithm 1 summarizes the steps involved in comput-
ing the medial axis. The proposed approach first computes
transition points as well as A3 and A3

1 curves using prop-
erties of the B-spline representation. A2

1 surfaces are then
computed by evolving intersection curves over time using
theoretically derived evolution vector fields. Connectivity
between intersection curves at consecutive time instants
is maintained as they evolve. The topology of intersection
curves are appropriately modified during transition events.
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This computational approach is equivalent to following the
level sets of the distance field of S(u, v). Since the set of
all local normal forms of the distance field given in [32] are
considered, our approach presents the complete topological
structure of the medial axis.

Algorithm 1 Computing medial axis

(i) Compute transition points.
(ii) Compute A3 curves and A1A3 points.
(iii) Compute A3

1 curves.
(iv) Classify transition points as creation, intermediate or

annihilation.
(v) Compute medial axis surfaces.

5 Transition Points and Transition Events

This section presents techniques to compute all types of
transition points of intersection curves for the 3D medial
axis. A summary of all types of transition events is also pre-
sented. In addition to A1A3 and A4

1 points, the transition
points include those points on A3 curves, A3

1 curves and
A2

1 surfaces where the distance to the boundary attains a
critical value. Transitions on A3 and A3

1 curves depend on
the direction of increasing distance to boundary along the
curves, which we term as the curve’s flow direction.

Let Si(ui, vi), i = 1, 2, 3, 4, denote representations of dif-
ferent regions of the boundary surface, and let Ni = ∂Si

∂ui

×
∂Si

∂vi

denote the unnormalized normals of Si respectively.
By treating the single boundary surface as if it were dif-
ferent regions, we present geometric equations for comput-
ing transition points. Roots of nonlinear geometric equa-
tions are computed using adaptations of robust subdivision
based techniques [17,15]. Extensions of these methods to
improve efficiency of computing A3

1 critical points and A4
1

points are presented.

5.1 A3 critical points
Although every point on S(u, v) has two principal cur-

vatures κ1 ≥ κ2, for the purposes of medial axis compu-
tation, it is necessary to consider only the larger principal
curvature κ1 [5]. The transition points of the medial axis
related to κ1 correspond to points on S(u, v) where κ1 at-
tains a critical value. These points are computed by solving
for simultaneous roots of Equation 5.1.

κ1u(u, v) = 0 κ1v(u, v) = 0 (5.1)

Further, the sphere centered at the offset point S(u, v) +
1

κ1(u, v)
n(u, v) having radius

1

κ1(u, v)
must be maximal,

by definition of the medial axis. The procedure for the max-
imal condition check is presented in Appendix A. The tran-
sition points of A3 type are the centers of such maximal
spheres. An A3 critical point is either a creation point or
an intermediate transition point, depending on whether the
two A3 curve segments on either side of the critical point
flow outward or inward.

(a) (b)

Fig. 3. Critical point of type (a) A2
1, (b) A3

1, shown in blue. Different
regions of the surface S are shown in grey and arrows point in the
corresponding surface normal directions.

5.2 A2
1 critical points

The A2
1 transition points correspond to A2

1 points for
which the distance to the boundary attains a critical value.
An A2

1 critical point at which the distance function has a
local minimum corresponds to a creation event. When the
distance function has a local saddle, the critical point cor-
responds to an intermediate transition event. Finally, the
critical point corresponds to an annihilation event when
the distance function attains a local maximum. This char-
acterization follows the behavior of the transition points
for the intersection of two surfaces under generalized offset
flows [10].

D(u1, v1, u2, v2) =‖ S1 − S2 ‖2= 〈S1 − S2, S1 − S2〉

(5.2)
Taking the partial derivatives of D with respect to
u1, v1, u2, v2 and solving Equation 5.3, we obtain critical
points of D.

〈S1 − S2,
∂Si

∂ui

〉 = 0, 〈S1 − S2,
∂Si

∂vi

〉 = 0, i = 1, 2

(5.3)
Since some solutions of Equation 5.3 may not correspond
to maximal spheres, the maximality condition must be
checked at all solutions of Equation 5.3 using the proce-
dure in Appendix A. Trivial solutions at which (u1, v1) =
(u2, v2) are ignored. Equation 5.3 implies that the surface
normals at S1(u1, v1) and S2(u2, v2) must point exactly in
opposite directions as illustrated in Figure 3(a).

5.3 A1A3 points
A1A3 points are computed as part of the algorithm for

computing A3 curves. See Section 6.1. A1A3 points corre-
spond to intermediate transition events based on whether
the A3 curve and the A3

1 curve flow inward or outward at
the A1A3 point. Techniques for computing the flow direc-
tions (called the shock structure) and characterization of
their combinations are presented in [20].

5.4 A3
1 critical points

The A3
1 critical points correspond to A3

1 points at which
the distance to the boundary attains a critical value. At
such points, the normals at the three surface points are
coplanar as illustrated in Figure 3(b) [31]. A3

1 critical points
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can be creation, annihilation or intermediate transition
types based on the flow direction of the A3

1 curve segments
at the critical point. For a point P ∈ R

3 to be an A3
1 critical

point, the following equations must be satisfied.

〈P − Si,
∂Si

∂ui

〉 = 0, 〈P − Si,
∂Si

∂vi

〉 = 0, i = 1, 2, 3 (5.4a)

‖ P − S1 ‖ = ‖ P − Sj ‖, j = 2, 3 (5.4b)

〈N1 × N2, N3〉 = 0 (5.4c)

Since P = (x, y, z) is unknown, Equations 5.4(a)-(c) form
a system of nine non-linear equations in nine unknowns.
This system is reduced by adapting the simplification tech-
niques presented for surface-surface bisectors in [17]. Sup-
pose P = S1+αN1, and substitute for P in Equation 5.4(b)
with j = 2 to obtain

α =
−〈S1 − S2, S1 − S2〉

2〈S1 − S2, N1〉
(5.5)

Substituting for P and α in Equations 5.4(a)-(b) with i =
2, 3, j = 3, and simplifying yields a system of six equations
in six variables. Denote S1 − Si by S1Mi, i = 2, 3.

2〈S1M2, N1〉〈S1Mi,
∂Si

∂ui

〉− ‖ S1M2 ‖2 〈N1,
∂Si

∂ui

〉 = 0, i = 2, 3

(5.6a)

2〈S1M2, N1〉〈S1Mi,
∂Si

∂vi

〉− ‖ S1M2 ‖2 〈N1,
∂Si

∂vi

〉 = 0, i = 2, 3

(5.6b)

〈S1M2, N1〉 ‖ S1M3 ‖2 − ‖ S1M2 ‖2 〈N1, S1M3〉 = 0
(5.6c)

〈N1 × N2, N3〉 = 0 (5.6d)

Note that Equations 5.4(a) for i = 1 are automatically
satisfied. It is possible to solve the system of equations
in 5.6(a)-(d) by symbolically representing the left hand
sides of the equations and using subdivision based meth-
ods directly on the 6-variate functions [17], but the large
memory requirements rendered it infeasible on an 8GB
RAM machine. The expression tree based method pre-
sented in [15] significantly reduced the memory require-
ments but was still computationally infeasible due to the
large number of dimensions.

To make this approach practical, we have improved the
computation time for this problem using hierarchical and
parallel computation strategies. Equations 5.6(a)-(b) for
i = 2 are dependent only upon u1, v1, u2, v2. Therefore, the
problem size is reduced by first finding subdomains that
satisfy these two equations, and then finding subdomains
that also satisfy Equations 5.6(a)-(d) for i = 3. Intuitively,
Equations 5.6(a)-(b) i = 2 require two points on the sur-
face that are equidistant from an offset point P in R

3. The
remaining equations find a subset of those points for which
there is a third surface point that is also equidistant to P .

The expression tree based approach is used to subdi-
vide u1, v1, u2, v2 parametric domains until a user specified

threshold is reached while using interval arithmetic to re-
ject subdomains that do not satisfy Equations 5.6(a)-(b)
with i = 2. Also, subdomains that do not correspond to re-
gions that satisfy the maximal condition are pruned. The
maximal condition is checked by computing ranges of ρ =
α ‖ N ‖ with interval arithmetic and testing whether 1)
the range contains a part of the positive real line, and 2) is
bounded by the size of the region enclosed within S. Neg-
ative values of ρ correspond to points outside the region
since the offset would be in the outward normal direction
and thus cannot contribute to the solution. Each of the
remaining subdomains along with variables u3, v3 is then
tested with Equations 5.6(a)-(d) using subdivision along
u3, v3 parametric directions, interval arithmetic and prun-
ing. Moreover, this step is performed in parallel since the
subdomains are independent. Trivial solutions are ignored.
The centers of remaining subdomains of ui, vi, i = 1, 2, 3
are used in a Newton-Raphson refinement step [17] to ob-
tain accurate solutions and non-maximal solutions are ig-
nored. This step is also performed using parallel processing
techniques.

5.5 A4
1 points

A4
1 points are equidistant to four different points on S

and the corresponding sphere is maximal. A4
1 points can be

annihilation or intermediate transition based on the direc-
tion of the flow of the four incident A3

1 curves as presented
in [20]. For a point P ∈ R

3 to be an A4
1 point, the following

equations must be satisfied.

〈P − Si,
∂Si

∂ui

〉 = 0, 〈P − Si,
∂Si

∂vi

〉 = 0, i = 1,2,3,4

(5.7a)

‖ P − S1 ‖ = ‖ P − Sj ‖ , j = 2,3,4 (5.7b)

Just as in the case for A3
1 critical points, the system in

Equation 5.7 of eleven equations is reduced using Equa-
tion 5.5 to a system in eight equations in eight variables
ui, vi, i = 1, 2, 3, 4 shown in Equation 5.8(a)-(c).

2〈S1M2, N1〉〈S1Mi,
∂Si

∂ui

〉− ‖ S1M2 ‖2 〈N1,
∂Si

∂ui

〉 = 0, i = 2, 3, 4

(5.8a)

2〈S1M2, N1〉〈S1Mi,
∂Si

∂vi

〉− ‖ S1M2 ‖2 〈N1,
∂Si

∂vi

〉 = 0, i = 2, 3, 4

(5.8b)
‖ S1Mj ‖2 〈S1M2, N1〉− ‖ S1M2 ‖2 〈N1, S1Mj〉 = 0, j = 3, 4

(5.8c)
Intuitively, Equations 5.8(a)-(b) with i = 2 require two

points on the surface that are equidistant from an offset
point P in R

3. Equations 5.8(a)-(c) with i = 3, j = 3 find
a third surface point that is also equidistant to P with the
other two points. And finally, Equations 5.8(a)-(c) with i =
4, j = 4 find a fourth surface point that is equidistant to P
with the other three points.

Equations 5.8(a)-(b) with i = 2 are dependent only upon
u1, v1, u2, v2; Equations 5.8(a)-(c) with i = 3, j = 3 are
dependent on u1, v1, u2, v2, u3, v3, and Equations 5.8(a)-(c)
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with i = 4, j = 4 are dependent on u1, v1, u2, v2, u4, v4. So
this structure lends itself to a hierarchical technique similar
to the A3

1 critical point case. Equations 5.8(a)-(c) will pro-
vide exactly the same solutions for both i = 3, j = 3 and
i = 4, j = 4, so this step is performed once and subdomains
in the u3, v3 parametric directions are used for u4, v4 para-
metric directions, thereby effectively reducing the number
of dimensions in the subdivision search stage from eight to
six. Moreover, Equations 5.8(a)-(c) with i = 2, 3, j = 3 are
identical to Equations 5.6(a)-(c). So the subdivision stage
for A3

1 critical point and A4
1 point computations are com-

bined. The refinement stage for Equations 5.8(a)-(c) are
performed in parallel.

5.6 Catalog of Transition Events
At transition points, corresponding evolution curves are

either created, annihilated or undergo intermediate transi-
tions. We present a complete list of all generic transitions
for the medial axis.

1. Creation Events:
i) At an A3 critical point where κ1 has a local maxi-

mum. An intersection curve segment is created with
the two end points on an A3 curve.

ii) At an A2
1 critical point where the distance to S has

a local minimum. An intersection curve loop of the
evolving offset surfaces is created.

2. Annihilation Events:
i) At an A2

1 critical point where the distance to S has
a local maximum. An intersection curve loop ends.

ii) At an A3
1 critical point where two A3

1 curves flow
inward, and the corresponding intersection curves
disappear.

iii) At an A4
1 point where four A3

1 curves flow inward,
and the corresponding intersection curves end.

3. Intermediate Transition Events:
i) At an A3 critical point where κ1 has a local saddle

point, at which two intersection curves join.
ii) At an A2

1 critical point where the distance to S has
a local saddle so two intersection curves meet and
exchange branches.

iii) At an A1A3 point where the intersection curve from
a smooth sheet passes and creates an A3

1 point which
evolves along an A3

1 curve away from the A1A3

point.
iv) At an A1A3 point where an A3

1 curve flows into
it and the intersection curves meeting at the tran-
sition point transform into a smooth curve on a
smooth medial sheet.

v) At an A3
1 critical point where three intersection

curves on different A2
1 surfaces meet and split into

two triples of intersection curve segments which
meet at the end points on A3

1 curves flowing out-
ward.

vi) At an A3
1 critical point where two intersection

curves on different A2
1 surfaces meet and split into

two pairs of intersection curve segments meeting at
the end points on A3

1 curves flowing outward. Also,

a new intersection curve on a third A2
1 surface is

created with the same end points on the A3
1 curve.

vii) Two intersection curves on distinct A2
1 surfaces

meet at two regular A3
1 points, where two intersec-

tion curves on a third A2
1 surface also end. The two

A3
1 curves flow into the critical point, the first two

intersection curves on different A2
1 surfaces collapse

to the critical point, and the other two intersection
curves on the third A2

1 surface merge into a single
intersection curve.

viii) Three A3
1 curves meet at an A4

1 point with a transi-
tion to one A3

1 curve flowing outward from the A4
1

point. Intersection curves are modified accordingly.
ix) Two A3

1 curves meet at an A4
1 point with a transition

to the other two A3
1 curves. Intersection curves are

modified accordingly.

6 Curve Elements

6.1 A3 Curves
Ridges are loci of points on a surface at which one of the

principal curvatures attains a critical value along its princi-
pal direction [23]. A ridge point of κ1 satisfies 〈∇κ1, t1〉 =
0, where principal direction t1 is a 2D column vector with
the two elements of the vector denoting coefficients of Su

and Sv at S(u, v). A κ1 ridge point is called elliptic if κ1

attains a local maximum along t1 [33].
A3 curves on the medial axis correspond to loci of ellip-

tic ridge points of κ1 on the surface such that the sphere
centered at the center of curvature corresponding to κ1 is
maximally inscribed within the region of interest. Ridges
on S(u, v) are computed using techniques presented in [33]
that guarantee robust and accurate extraction of all ridges
on B-spline surfaces. Ridge curves are output as polylines
in [33]. Elliptic ridges of κ1 are identified by testing the
extremum type condition at each ridge point vertex of the
polylines. Only those points that pass the maximal con-
dition are retained resulting in segments or closed curve
loops (See Appendix A). The end points of each non-loop
segment occur where the maximal condition first fails and
corresponds to an A1A3 point. A3 curves on the medial axis
are then computed as offsets of elliptic ridges at distances
1
κ1

(radius of curvature) along the inward normal of the
surface at each point. In Equation 6.1, R is a collection of
m ridge curves Rj that correspond to A3 curves. Each Rj

is a connected set of elliptic ridge points on S.

R = {
m
⋃

j=1

Rj}, Rj = {(u, v) : 〈∇κ1(u, v), t1(u, v)〉 = 0,

tT1





κ1uu κ1uv

κ1uv κ1vv



 t1 < 0, bmax(u, v) = (C(u, v),
1

κ1(u, v)
)}

C(u, v) = S(u, v) +
1

κ1(u, v)
n(u, v)

(6.1)
where bmax(u, v) is a maximally inscribed sphere with cen-
ter C(u, v) and radius 1

κ1(u,v) . The A3 curves on the medial

axis are the loci of the sphere centers C(u, v) for all Rj .
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Fig. 4. Tangent planes of offset surfaces σi with normals ni, i = 1, 2, 3
at a point P . Pairwise intersections of offset surfaces are along Z12,
Z23, Z13.

Identifying A1A3 points on A3 curves. By definition,
A1A3 points are locations where the maximal sphere is tan-
gent to the corresponding ridge point on the surface as well
as to another point in a different region of the surface. For
each end point of a non-loop segment where the maximal
condition fails, the other surface point corresponding to the
A1 condition is determined by finding closest points on the
surface with distance equal to the radius of curvature ( 1

κ1

)
at the ridge point using Equation A.1 in Appendix A.

6.2 A3
1 Curves

This section presents a tracing algorithm for computing
A3

1 curves. A3
1 critical points, A1A3 points and A4

1 points,
the computation of which is presented in Section 5, are
source and sink points for the proposed algorithm. The reg-
ular points of A3

1 curves correspond to points where three
different regions of the of the deforming boundary intersect
transversely (i.e., the three tangent planes of the offset sur-
face at the intersection point are different). Using this char-
acterization, we construct evolution vector fields based on
methods and ideas from [12] to follow the time trace of A3

1

points. When these vector fields are integrated beginning
at an A3

1 point, we obtain the A3
1 curve from that point.

6.2.1 Evolution Vector Field for the A3
1 Curves

Consider a triple intersection point P ∈ R
3 at which the

three offset surfaces intersect transversely. Denote the three
different surface regions as Si, with unit surface normal vec-
tors ni, and the corresponding offset surfaces as σi(ui, vi, t),
i = 1, 2, 3 respectively. Let φi = σiui

× σivi
(Note φi ‖ ni).

Since the tangent planes at P are all different, ni, i = 1, 2, 3
span R

3. Zij = φi × φj , i = 1, 2, 3, j = (i + 1) mod 3,
are tangent vectors to the intersection curves of the pair of
offset surfaces σi and σj . A linear algebra argument shows
that {Z12, Z23, Z13} also forms a basis for R

3 at P . Also,
because both Zij and Zjk are orthogonal to nj , i = 1, 2, 3,
j = (i+1) mod 3, k = (i+2) mod 3, they span the tangent
plane of σj at P . (See Figure 4).

At each point in the neighborhood of P , we write

n1 − n2 = a1Z12 + b1Z13 + c1Z23

n3 − n2 = a2Z12 + b2Z13 + c2Z23

(6.2)

From Equation 6.2, the evolution vector field η in a neigh-
borhood of P in R

3 is given by Equation 6.3, which is given

in a representation in terms of the normal vector field and
tangent vector fields to each offset surface.

η = n1 −
(

(a1 − a2)Z12 + b1Z13

)

= n2 +
(

c1Z23 + a2Z12

)

= n3 −
(

b2Z13 + (c2 − c1)Z23

)

(6.3)

The integral curve of η through P is a curve of triple
intersection points and hence follows the evolution of the
A3

1 curve until a sink point is reached.

dχ

dt
= η(χ), χ(0) = P, χ(t) ∈ R

3 (6.4)

Furthermore, define vector fields on the parameter-time
space as

νi = et + αieui
+ βievi

, i = 1, 2, 3 (6.5)

α1 = (a1 − a2)〈−φ2, σ1v1
〉 + b1〈φ3, σ1v1

〉

β1 = (a1 − a2)〈φ2, σ1u1
〉 − b1〈φ3, σ1u1

〉

α2 = −a2〈φ1, σ2v2
〉 + c1〈φ3, σ2v2

〉

β2 = a2〈φ1, σ2u2
〉 − c1〈φ3, σ2u2

〉

α3 = b2〈−φ1, σ3v3
〉 + (c1 − c2)〈φ2, σ3v3

〉

β3 = b2〈φ1, σ3u3
〉 − (c1 − c2)〈φ2, σ3u3

〉

(6.6)

and el denotes the unit vector in the parameter-time
space direction l, l = t, u1, v1, u2, v2, u3, v3. Then, η =
dσi(νi), i = 1 or 2 or 3. This implies that the integral
curves of νi are mapped by σi to integral curves of η. The
corresponding integral curves of νi will trace the evolution
of the intersection curves in the parameter space.

6.2.2 Tracing Algorithm for A3
1 Curves

We first classify the critical points and end points as
source and sink points. A1A3 source points each provide
a start A3

1 point that is computed using local geometric
properties of the medial axis [20]. Source A3

1 critical points
provide two start A3

1 points computed on either side of the
normal to the plane containing the three surface points.
A4

1 source points provide one or two start A3
1 points as

determined using local geometric properties of the medial
axis presented in [20]. Algorithm 2 is used to trace all A3

1

curves.
αi, βi are computed by first solving for aj , bj, cj , j =

1, 2 from Equation 6.2 and substituting in Equation 6.6.
In order to avoid numerical errors accumulating over time,
a refinement step for the system of Equations 5.4 (a), (b)
along with ‖ P − S1 ‖= t + dt to project points accurately
onto A3

1 curves [17].

7 A
2

1
Surfaces

This section presents evolution vector fields to sweep out
intersection curves of offset surfaces under the eikonal flow.
An algorithm to compute the surfaces of the medial axis us-
ing the evolution method is then presented. Between tran-
sition points, the evolution vector fields are integrated to
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Algorithm 2 Tracing A3
1 curves

INPUT: SRC, SINK
OUTPUT: Call, the set of all A3

1 curves
begin

Call := ∅
for p := (u1, v1, u2, v2, u3, v3, t) ∈ SRC

C := {p}
while p /∈ SINK do

ui := ui + αidt; vi := vi + βidt, i = 1, 2, 3
p := refine(u1, v1, u2, v2, u3, v3, t + dt)
C := C

⋃

{p}
od

Call := Call

⋃

C
end

Fig. 5. Tangent planes of offset surfaces σi with normals ni, i = 1, 2,
intersecting along n1 × n2 at a point P . W ∈ TSσ2

.

compute a time trace of the evolving intersection curves
that, together with transition points, forms the medial axis
A2

1 surfaces. The construction of the evolution vector fields
will follow the same ideas used in the preceding section for
A3

1 curves. It is an adaptation of that given in [10] for the
evolution of intersection curves of two different surfaces un-
der generalized offset flows. In our case, it is applied to the
self-intersections of the offsets of a single surface under the
eikonal flow.

7.1 Evolution Vector Field for Intersection Curves
Consider two separate surface regions Si with unit nor-

mals ni and the offset surfaces under the eikonal flow by
σi(ui, vi, t), i = 1, 2, respectively at a point P on an in-
tersection curve. If P is not a transition point, then σ1

and σ2 are not tangent and hence, n1 and n2 are indepen-
dent. n1 × n2 is tangent to the intersection curve. W =
n2 × (n1 × n2) is in the tangent plane of σ2. W is also or-
thogonal to the intersection curve (Figure 5). Since n1 and
n2 are independent, {σ1u1

, σ1v1
, W} are independent vec-

tor fields, and hence a basis for R
3. Thus, in the the neigh-

borhood of P, we write

n2 − n1 = a1σ1u1
+ b1σ1v1

− W (7.1)

Since W lies in the tangent plane of σ2,

W = a2σ2u2
+ b2σ2v2

(7.2)

Combining Equations 7.1 and 7.2, we obtain two equivalent
representations of the evolution vector field in the neigh-
borhood of P in R

3 given by

ξ = n1 + a1σ1u1
+ b1σ1v1

= n2 + a2σ2u2
+ b2σ2v2

(7.3)

By arguments analogous to those used in [10], ξ is tan-
gent to the surface formed from the union of the evolving
intersection curves of σ1 and σ2, which is the A2

1 surface.
Thus, we can follow the evolution of the intersection curve
(where the evolving curves remain transverse) by integrat-
ing the vector field ξ with initial conditions as the points
on the intersection curve.

dχ

dt
= ξ(χ), χ(0) = P, χ(t) ∈ R

3 (7.4)

Furthermore, define vector fields on the parameter-time
space as ζi = et + aieui

+ bievi
, where el denotes the

unit vector in the parameter-time space direction l, l =
t, u1, v1, u2, v2. Then, ξ = dσ1(ζ1) = dσ2(ζ2). This implies
that the integral curves of the ζi are mapped by σi to in-
tegral curves of ξ. The corresponding integral curves of ζi

will trace the evolution of the intersections curves in the
parameter space.

7.2 Algorithm for Computing A2
1 Surfaces

Given a connected set of samples representing an inter-
section curve at time t, a discrete marching algorithm is
used to trace each point onto a new intersection curve at
time t+dt using Equation 7.4. Suppose, P = σi(u

p
i , v

p
i , t) on

an intersection curve evolves to a point Q = σi(u
q
i , v

q
i , t+dt)

after a small time dt, then (uq
i , v

q
i ) = (up

i + aidt, vp
i + bidt).

ai and bi can be obtained by solving Equations 7.1 and 7.2.
In order to avoid numerical errors accumulating over time,
the middle point algorithm [4] is used to project points ac-
curately onto intersection curves and refine parameter val-
ues simultaneously. Points on an intersection curve are re-
sampled at every time step by adaptively inserting or re-
moving points such that they are uniformly spaced in R

3.
Starting from t = 0, Algorithm 3 is used to compute A2

1

surfaces. Intersection curves can have A3 or A3
1 points at

curve ends after certain transitions. Since A3 and A3
1 curves

are computed in a prior step, the evolution of such end
points is performed by tracking points on corresponding
A3 and A3

1 curves. A1A3 and A4
1 points occur at transition

events only. Such points are added to intersection curve
ends during the transition to maintain topological structure
of the medial axis. Recall from Section 2 that every medial
axis point is associated with a set of parameter values, one
for each contact point on S. Each parameter designates a
distinct region of S, where the intersection of the offsets at
time given by the radius of the maximal sphere results in the
medial axis point. During transitions, the correspondences
between parameter values of two interacting intersection
curves are obtained using distance in parameter space to
consistently identify distinct regions of S.

8 Results and Discussion

This section presents examples of 3D medial axis com-
putation using the proposed approach. In each example,
the region of interest is bounded by a single tensor prod-
uct parametric biquintic B-spline surface. As explained in
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(a) (b)

(c) (d)

Fig. 6. Several stages of evolution of medial axis of a deformed ellipsoid. Transition points are shown in green, evolving intersection curves
are shown in red.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Several stages of evolution of medial axis of a deformed ellipsoid with a fin. Transition points are shown in green, evolving intersection
curves are shown in red.

Algorithm 3 Computing surface sheets

(i) Sort transition points in order of increasing time.
(ii) Increment t by small timestep dt.
(iii) If no transition points are encountered, evolve all cur-

rent intersection curves to t + dt.
(iv) Otherwise, perform transition for each transition

point encountered in increasing order of t and evolve
intersection curves not involved in the transition
event.

(v) If all transitions have been completed, then stop. Oth-
erwise, repeat Step (ii).

Section 4, the medial axis singular set and transition points
are computed prior to computing surface sheets of a medial
axis. Figures 6, 7 and 8 show several steps of the evolution
of the (self-)intersecting set of the eikonal flow for various
shapes. In these figures, A1A3 points are indicated by pur-
ple spheres, A4

1 points by dark blue spheres, A3 curves by
thick blue curves, A3

1 curves by thick yellow curves and A2
1

surface sheets in dull violet. Transition points are shown

as green spheres and evolving intersection curve fronts are
shown as thick red curves.

Figure 6 shows several steps of the A2
1 surface computa-

tion for a deformed ellipsoid shape. The medial axis singu-
lar set for this example is a single A3 curve. The evolution
starts at the left and right extremities of the shape that
correspond to curvature maximum creation points. The in-
tersection curves merge into a single loop at two simultane-
ous curvature saddle points that then annihilates at a dis-
tance maximum point. The medial axis therefore consists
of a single A2

1 surface bounded by a closed A3 curve.
Figure 7 shows several steps of the A2

1 surface compu-
tation for a deformed ellipsoid shape with a fin. The me-
dial axis singular set for this example consists of a closed
A3 curve, another A3 curve segment with an A1A3 point
at both ends and an A3

1 curve connecting the two A1A3

points. Intersection curves are created at curvature maxi-
mum points at the left and right extremities of the shape,
as well as at the top of the model corresponding to the fin.
The intersection curves corresponding to the bottom sur-

9



(a) (b)

(c) (d)

(e) (f)

Fig. 8. Several stages of evolution of medial axis of an object with multiple interconnected medial surfaces. Transition points are shown in
green, evolving intersection curves are shown in red.

face merge into a single loop at two simultaneous curvature
saddle points. The intersection curves then transition at
the two A1A3 points and annihilate at a critical point on
the A3

1 curve.
Figure 8 shows several steps of the A2

1 surface computa-
tion for a more complicated shape. Intersection curves are
created at curvature maximum points (Figure 8(b)). An A3

curve loop is formed after corresponding intersection curve
segments merge at curvature saddle points (right most A3

curve shown in Figure 8(b)). The intersection curves un-
dergo further transitions at fin points (Figure 8(c) and (d))
and then evolve through the A4

1 point where three A3
1 curves

flow into the A4
1 point and a fourth one flows outward (Fig-

ure 8(e)). The intersection curves finally annihilate at a
critical point on the A3

1 curve (Figure 8(f)). The medial axis
for this shape exhibits all the generic structural elements
presented in Section 2. There are two A3 curve segments
each having an A1A3 fin point at both ends. There is also
one A3 curve loop. Four A3

1 curve segments meet at an A4
1

point shown as a dark blue sphere (Figure 8(b)). The other
ends of the four A3

1 curve segments correspond to the A1A3

fin points where they meet A3 curve segments.
In addition to accurate points on the medial axis, the

proposed approach also accurately captures the topological
structure of the medial axis. Figure 1 shows all the surfaces
as well as entities of the singular set colored differently. In
addition, since the evolution tracing is performed in para-
metric space, the boundary locations corresponding to each
medial axis point is also known.

Although the approach is presented for the generic situ-
ation, the examples presented above do have certain non-

Table 1
Computation Times (TP = Transition Point, C = Curves)

Biquintic surfaces A3 TP A2
1 TP A3

1 + A4
1 TP A3 C, A1A3 A3

1 C Surfaces

(control points) (min) (sec) (min) (min) (sec) (sec)

Fig. 6: 13 × 9 18 35 40 4.4 - 2

Fig. 7: 15 × 9 23 36 40 5.3 1 3

Fig. 8: 17 × 15 55 59 90 40 1 7

genericities. For example, in the examples shown in Figure 6
and Figure 7, there are two simultaneously occurring cur-
vature saddle point transitions that modify the same set of
evolving intersection curves. Further, in the example shown
in Figure 7, there are two simultaneously occurring A1A3

points. These situations are addressed as special cases in
the implementation. The examples shown in Figure 6 and
Figure 7 also have degenerate points that are sharp corners
at the left and right extremities. These points are computed
as curvature maximum points having a very small radius.
Critical points with more than four tangency points will be
identified as A4

1 points with the four tangency points be-
ing a subset of the actual number of points. Symmetrical
regions (e.g., spherical or cylindrical regions) also result in
non-generic situations.

The computational complexity of the proposed algorithm
is directly proportional to the number of transition points
since it bounds the total number of intersection curves over
the entire evolution for a given model. Likewise, the num-
ber of critical points, A1A3 points and A4

1 points bound the
number and hence computational complexity of A3 and A3

1

curve tracing. Table 1 presents running times on an Intel
x64 machine with four cores and 8GB RAM for the exam-
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ples shown in this paper. It is evident from the table that
most of the time was spent in computing the transition
points since that involves B-spline root finding. We are cur-
rently investigating further enhancements to the root find-
ing algorithms to reduce computation time. Although the
total running time is longer than is desirable, each stage of
the proposed approach is automatic, presenting accurate
solutions with topology. Therefore, time consuming manual
pruning and structure extraction steps are not required.

The techniques for computing transition points of A3,
A2

1 and A1A3 types provide all solutions. In order to re-
duce computation time for A3

1 and A4
1 transition points,

they were required to be at least further apart than 5% of
the size of the parametric domain in the examples shown.
Therefore, no two transition events could occur within a
region of this size. The topology of the computed medial
axis is accurate up to this specified accuracy. Between tran-
sition events, a much higher accuracy (10−4 of the size of
the model in R

3) was used to locate the medial axis points
since the evolution of the intersection curves is smooth.

In the current implementation, it is assumed that the
boundary surface is given by a single B-spline surface. How-
ever, the theoretical results are quite general and extend
to regions bounded by multiple surface patches stitched
together since we present results considering different re-
gions of a single surface. For multi-surface models, com-
putation of transition points will involve a combinatorial
search with subsets of surfaces (O(nk) combinations for n-
surface model for Ak

1 point type). The implementation of
algorithms for computing curve elements and medial sur-
faces will involve keeping track of the boundary surfaces
involved along with corresponding parameter values. Fur-
ther, the approach is not restricted to simply connected re-
gions having genus zero even though the examples shown
in the paper are such types of objects. We are also investi-
gating efficient techniques to address multi-surface models
that also includes objects with multiply connected surfaces
having higher genus.

9 Conclusions

A new algorithm for computing the medial axis of regions
in R

3 bounded by tensor product parametric B-spline sur-
faces is presented. The generic structure of the 3D medial
axis consists of A2

1 surfaces along with a singular set of A3

curves, A3
1 curves, A1A3 points and A4

1 points. The pro-
posed approach is based on the eikonal or grassfire flow of
the bounding surfaces along the inward surface normal di-
rection. The eikonal flow results in special transition points
that create, modify or annihilate evolving (self-) intersec-
tion curves of the corresponding offset surfaces. The tran-
sition points as well as A1A3 and A4

1 points are computed
by solving geometric equations using B-spline based root
finding techniques. The geometric equations are of high de-
gree and dimensions and several strategies for reducing the
computation time are provided. A3 curves are computed
using the technique presented in [33]. A3

1 curves are com-
puted using a new evolution based tracing approach. A2

1

surfaces of the medial axis are computed as a time trace of
the evolving (self-) intersection set under the eikonal flow
using an adaptation of the technique presented in [10] in
conjunction with techniques for addressing special transi-
tion events of the eikonal flow.

Existing discrete techniques introduce artifacts that are
not part of the medial representation and considerable ef-
fort is required to remove them. In addition, the output of
existing techniques is typically a set of discrete elements
without connectivity and structural information. Consid-
erable manual effort is required in order to infer this infor-
mation. Existing approaches for smooth surface represen-
tations compute only partial solution of the medial axis,
specifically A3

1 curves and A4
1 points, for a restricted set of

shapes. The proposed approach enables accurate compu-
tation of the complete medial axis as well as correct topo-
logical structure for regions bounded by freeform surfaces.
The proposed approach does not generate non-medial ar-
tifacts and also computes parameter values of the bound-
ing surface points corresponding to each medial axis point.
Ongoing work includes further optimizations of the transi-
tion point computation strategies to improve computation
time, and extension of the proposed work for multi-surface
models and to address other non-generic situations.

10 Acknowledgments

This work was supported in part by the University of
Utah Graduate Research Fellowship, NSF DMS-0706941
and DARPA grant HR0011-09-1-0055. All opinions, find-
ings, conclusions or recommendations expressed in this doc-
ument are those of the authors and do not necessarily re-
flect the views of the sponsoring agencies.

References

[1] N. Amenta, S. Choi, and R. Kolluri. The power crust. In
Proceedings of 6th ACM Symposium on Solid Modeling, pages
249–260, 2001.

[2] N. Amenta, S. Choi, and R. Kolluri. The power crust, unions of
balls, and the medial axis transform. Computational Geometry:
Theory and Applications, 19(2-3):127–153, 2001.

[3] G. Baja and S. Svensson. Surface Skeletons Detected on the

D6 Distance Transform. In Proceedings of the Joint IAPR Int.
Workshops on Advances in Pattern Recognition, pages 387–396.
Springer-Verlag, 2000.

[4] R. Barnhill, G. Farin, M. Jordan, and B. Piper. Surface/surface
intersection. Computer Aided Geometric Design, 4(1-2):3–16,
1987.

[5] A. Belyaev, I. Bogaevski, and T. Kunii. Principal direction
ridges. Technical report, Technical Report 96-4-001, Center for
Mathematical Sciences, The University of Aizu, Japan, 1996.

[6] S. Biasotti, D. Attali, J. Boissonnat, H. Edelsbrunner,
G. Elber, M. Mortara, G. Baja, M. Spagnuolo, M. Tanase,
and R. Veltkamp. Skeletal structures. Shape Analysis and
Structuring, pages 145–183, 2008.

[7] H. Blum and R. Nagel. Shape description using weighted
symmetric axis features. Pattern recognition, 10(3):167–180,
1978.

[8] G. Borgefors, I. Nyström, and G. S. di Baja. Computing
skeletons in three dimensions. Pattern Recognition, 32(7):1225–
1236, 1999.

11



[9] F. Chazal and A. Lieutier. Stability and homotopy of a subset
of the medial axis. In SM ’04: Proceedings of the ninth ACM
symposium on Solid modeling and applications, pages 243–248,
Aire-la-Ville, Switzerland, 2004. Eurographics Association.

[10] X. Chen, R. F. Riesenfeld, E. Cohen, and J. Damon.
Theoretically-based algorithms for robustly tracking intersection
curves of deforming surfaces. Compuer-Aided Design, 39(5):389–

397, 2007.

[11] T. Culver, J. Keyser, and D. Manocha. Accurate computation of
the medial axis of a polyhedron. In Proceedings of the fifth ACM
symposium on Solid modeling and applications, pages 179–190.
ACM New York, NY, USA, 1999.

[12] J. Damon. Smoothness and geometry of boundaries associated
to skeletal structures I: Sufficient conditions for smoothness.
Annales de l’Institut Fourier, 53(6):1941–1985, 2003.

[13] T. Dey and W. Zhao. Approximating the medial axis from the
Voronoi diagram with a convergence guarantee. Algorithmica,
38(1):179–200, 2003.

[14] T. Dey and W. Zhao. Approximate medial axis as a voronoi
subcomplex. Computer-Aided Design, 36(2):195–202, 2004.

[15] G. Elber and T. Grandine. Efficient solution to systems of
multivariate polynomials using expression trees. In IEEE Int.
Conference on Shape Modeling and Applications, 2008, pages
163–169, 2008.

[16] G. Elber and M. Kim. Computing rational bisectors. IEEE
Computer Graphics and Applications, pages 76–81, 1999.

[17] G. Elber and M. Kim. Geometric constraint solver using
multivariate rational spline functions. In Proceedings of the sixth
ACM symposium on Solid modeling and applications, pages 1–
10. ACM New York, NY, USA, 2001.

[18] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-
based hybrid planner. In Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, volume 1, pages 55–60, 2001.

[19] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a
simplified medial axis. Journal of Computing and Information
Science in Engineering, 3:274, 2003.

[20] P. Giblin and B. Kimia. A formal classification of 3D medial
axis points and their local geometry. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 26(2):238–251, 2004.

[21] L. Guibas, C. Holleman, and L. Kavraki. A probabilistic
roadmap planner for flexible objects with a workspace medial-
axis-based sampling approach. In Proceedings of 1999
IEEE/RSJ Int. Conference on Intelligent Robots and Systems,
volume 1, pages 254–259. IEEE, 1999.

[22] H. Gürsoy. Shape interrogation by medial axis transform for
automated analysis. PhD thesis, M.I.T., U.S.A, 1990.

[23] P. Hallinan, G. Gordon, A. Yuille, P. Giblin, and D. Mumford.
Two-and three-dimensional patterns of the face. AK Peters, Ltd.
Natick, MA, USA, 1999.

[24] I. Hanniel and G. Elber. Computing the voronoi cells of planes,
spheres and cylinders in r3. Computer Aided Geometric Design,
26(6):695–710, 2009.

[25] M. Held. VRONI: An engineering approach to the reliable and
efficient computation of Voronoi diagrams of points and line
segments. Computational Geometry, 18(2):95–123, 2001.

[26] M. Hisada, A. Belyaev, and T. Kunii. A Skeleton-based
Approach for Detection of Perceptually Salient Features on
Polygonal Surfaces. In Computer Graphics Forum, volume 21,
pages 689–700, 2002.

[27] C. Hoffman. How to construct the skeleton of CSG objects.
The Mathematics of Surfaces, IVA, Bowyer and Davenport Eds,
1990.

[28] C. Hoffmann. Geometric and solid modeling: an introduction,
volume 146. Morgan Kaufmann, 1989.

[29] S. Joshi and et al. Multiscale deformable model segmentation
and statistical shape analysis using medial descriptions. IEEE
Trans. on Medical Imaging, 21(5):538–550, 2002.

[30] L. Lam, S. Lee, and C. Suen. Thinning methodologies-a
comprehensive survey. IEEE Trans. on pattern analysis and
machine intelligence, 14(9):869–885, 1992.

[31] F. Leymarie and B. Kimia. The medial scaffold of 3d unorganized
point clouds. IEEE trans. on pattern analysis and machine
intelligence, pages 313–330, 2007.

[32] J. Mather. Distance to a manifold in euclidean space. In
Proceedings of the Symposium on Pure Mathematics 40 (part
II), pages 199–216. American Mathematical Society, 1983.

[33] S. Musuvathy, E. Cohen, J. Seong, and J. Damon. Tracing ridges
on B-spline surfaces. In 2009 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, pages 55–66. ACM, 2009.

[34] S. Pizer and et al. Deformable m-reps for 3 D medical image
segmentation. Int. Journal of Computer Vision, 55(2):85–106,
2003.

[35] R. Quadros, K. Ramaswami, F. Prinz, and B. Gurumoorthy.
LayTracks: a new approach to automated geometry adaptive
quadrilateral mesh generation using medial axis transform. Int.
Journal for Numerical Methods in Engineering, 61:209–237,
2004.

[36] M. Ramanathan and B. Gurumoorthy. Constructing medial axis
transform of extruded and revolved 3D objects with free-form
boundaries. Computer-Aided Design, 37(13):1370–1387, 2005.

[37] M. Ramanathan and B. Gurumoorthy. Interior medial axis
transform computation of 3 d objects bound by free-form
surfaces. Computer-Aided Design, 42(12):1217–1231, 2010.

[38] D. Sheehy, C. Armstrong, and D. Robinson. Shape Description
By Medial Surface Construction. IEEE Trans. on Visualization
and Computer Graphics, 2(1):62–72, 1996.

[39] A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier.
Hexahedral mesh generation using the embedded Voronoi graph.
Engineering with Computers, 15(3):248–262, 1999.

[40] E. Sherbrooke, N. Patrikalakis, and E. Brisson. An algorithm for
the medial axis transform of 3d polyhedral solids. IEEE trans.
on visualization and computer graphics, pages 44–61, 1996.

[41] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. Hamilton-
jacobi skeletons. Int. Journal of Computer Vision, 48(3):215–
231, 2002.

[42] K. Siddiqi and S. Pizer. Medial representations: mathematics,
algorithms and applications. Springer Verlag, 2008.

[43] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and
S. Dickinson. Retrieving articulated 3-D models using medial
surfaces. Machine Vision and Applications, 19(4):261–275, 2008.

[44] A. Sud, M. Foskey, and D. Manocha. Homotopy-preserving

medial axis simplification. In Proceedings of the 2005 ACM
symposium on Solid and physical modeling, pages 39–50, 2005.

[45] Y. ZHANG and P. WANG. Analytical comparison of thinning
algorithms. Int. journal of pattern recognition and artificial
intelligence, 7(5):1227–1246, 1993.

A Maximal Condition Check

In several steps of the algorithms presented in this pa-
per, it is necessary to check whether a given point P corre-
sponds to the center of a sphere with radius d that is max-
imally inscribed within the region bounded by B. In this
work, this condition is checked by first computing the clos-
est point on S(u, v) to P . Closest points are computed by
first computing points on the surface where the distance to
P , given by ‖ S(u, v) − P ‖, attains a critical value. Such
points are obtained by finding simultaneous roots of Equa-
tion A.1 using robust B-spline equation solvers [17,15].

〈S − P, Su〉 = 0, 〈S − P, Sv〉 = 0 (A.1)

All roots are then inspected to select the one with the small-
est distance. For P to correspond to a maximally inscribed
sphere, the smallest distance must equal d.
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